题目描述

在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?

输入输出格式

输入格式:

第一行有两个整数N,M用空格隔开。(1<=N<=300,1<=M<=300)

接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(1<=ki<=N, 1<=si<=20)。

输出格式:

只有一行,选M门课程的最大得分。

输入输出样例

输入样例#1: 复制

7  4
2 2
0 1
0 4
2 1
7 1
7 6
2 2

输出样例#1: 复制

13

思路

树型dp

  • 设u为v的直接先修课,即u为v的父节点
  • 设$f[u][i]$表示在u与u的儿子中,选了i门课的最大收益 (其中u必选)
  • 则有$f[u][i]=max(f[u][i],f[u][i-j]+f[v][j])$

注意 不能取k=j,因为至少有一门是必须留给先修课(父节点)

代码

#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register int
using namespace std;
inline int read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
const int maxn=410;
int n,m;
vector<int>e[maxn];
int w[maxn],f[maxn][maxn];
inline void add_edge(int s,int f){
e[f].push_back(s);
return;
}
void dp(int x){
for(re i=1;i<=m;++i) f[x][i]=w[x];
for(re i=0;i<e[x].size();++i){
int v=e[x][i];
dp(v);
for(re j=m;j;--j) {
for(re k=0;k<j;++k) {
f[x][j]=max(f[x][j],f[x][j-k]+f[v][k]);
}
}
}
return;
}
int main(){
n=read(),m=read();
int s,k;
for(re i=1;i<=n;++i){
k=read(),w[i]=read();
// add_edge(i,k);
e[k].push_back(i);
}
m++;
dp(0);
printf("%d\n",f[0][m]);
return 0;
}

【题解】Luogu p2014 选课 树型dp的更多相关文章

  1. 选课 - 树型DP(孩子兄弟建树法)

    题目描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N<300)门的选修课程,每个学生可选课程的数量 M 是给定的.学生选修了这M门课并考核通 ...

  2. 洛谷2014选课(树型dp)

    题目:https://www.luogu.org/problemnew/show/P2014 千万注意遍历 j 和 k 的边界! 0点很好用. siz很好用. #include<iostream ...

  3. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  5. 【题解】codeforces 219D Choosing Capital for Treeland 树型dp

    题目描述 Treeland国有n个城市,这n个城市连成了一颗树,有n-1条道路连接了所有城市.每条道路只能单向通行.现在政府需要决定选择哪个城市为首都.假如城市i成为了首都,那么为了使首都能到达任意一 ...

  6. 初学树型dp

    树型DP DFS的回溯是树形DP的重点以及核心,当回溯结束后,root的子树已经被遍历完并处理完了.这便是树形DP的最重要的特点 自己认为应该注意的点 好多人都说在更新当前节点时,它的儿子结点都给更新 ...

  7. 【XSY1905】【XSY2761】新访问计划 二分 树型DP

    题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...

  8. 洛谷P3354 Riv河流 [IOI2005] 树型dp

    正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...

  9. BZOJ 1564 :[NOI2009]二叉查找树(树型DP)

    二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...

随机推荐

  1. Nifi:nifi的基本使用

    Nifi的安装使用 Nifi安装 首先说一下Nifi的安装,这里Nifi可以支持Windows版和Linux,只需要去官网:http://nifi.apache.org/ 根据自己需要的版本,选择下载 ...

  2. auto_increment 自增长

    auto_increment create table t20( id int primary key auto_increment, (自增长必须为键) name char(16)); insert ...

  3. [bug] PowerDesigner的association按钮灰色不能使用

    参考 https://blog.csdn.net/markely/article/details/44873301

  4. [bug] IDEA中解决程序包javax.servlet不存在

    参考 https://blog.csdn.net/qq_41283865/article/details/81865806

  5. RHEL高级磁盘管理—Stratis

    2. Stratis 本地存储管理工具,通过Stratis可以便捷的使用Thin Provisioning.Snapshots.Pool-based的管理和监控等高级存储功能. Stratis 基于x ...

  6. 【转载】]基于RedHatEnterpriseLinux V7(RHEL7)下SPEC CPU 2006环境搭建以及测试流程 介绍、安装准备、安装、config文件以及运行脚本介绍

    https://www.codetd.com/article/1137423 <版权声明:本文为博主原创文章,未经博主允许不得转载> 本次利用SPECCPU2006测试工具来进行Intel ...

  7. 053.Python前端Django框架模板层

    模板层 一 模板语法之变量 在 Django 模板中遍历复杂数据结构的关键是句点字符, 语法: {{ var_name }} [root@node10 mysite]# cat app01/urls. ...

  8. linux中级之ansible配置(roles)

    一.roles介绍 什么情况下用到roles? 假如我们现在有3个被管理主机,第一个要配置成httpd,第二个要配置成php服务器,第三个要配置成MySQL服务器.我们如何来定义playbook? 第 ...

  9. 【数据结构与算法】多种语言(VB、C、C#、JavaScript)系列数据结构算法经典案例教程合集目录

    目录 1. 专栏简介 2. 专栏地址 3. 专栏目录 1. 专栏简介 2. 专栏地址 「 刘一哥与GIS的故事 」之<数据结构与算法> 3. 专栏目录 [经典回放]多种语言系列数据结构算法 ...

  10. [Django高级之forms组件]

    [Django高级之forms组件] forms组件之校验字段 # 第一步:定义一个类,继承forms.Form # 第二步:在类中写字段,要校验的字段,字段属性就是校验规则 # 第三步:实例化得到一 ...