这个题的思路还是比较巧妙的。

首先,我们发现操作只有删除和询问两种,而删除并不好维护连通性和割边之类的信息。

所以我们不妨像WC2006水管局长那样,将询问离线,然后把操作转化成加边和询问。

然后,我们会发现,若存在一条边\(x->y\),那么原本x到y的所有割边,都会变成非割边。

那意味着什么呢?

似乎加边操作,可以直接转化成区间修改。

那我们就可以首先对不涉及删除边,建一个生成树。(题目保证一定合法)

那么对于一棵树,所有的边都是割边,所以一开始所有的边的边权都是1(这里为了修改方便,我们将边权直接转化成点权了),也就是说树上除了根以外,权值都是1.

然后依次插入那些没有被删除,但是没有在生成树里面的边。每插入一条边,就涉及到一次链修改,将一条链的点的权值变成\(0\)。

然后操作中的加边也是同理。

对于询问的话,直接询问\((x,y)\)的路径和就好。

但是有一个需要注意的地方就是。由于我们边权转点权,所以\(lca\)处的点不属于路径,修改和询问的时候都需要注意的。

有些细节直接看代码吧

#include<bits/stdc++.h>
#define mk make_pair
#define pb push_back
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
const int maxm = 2*maxn;
struct Node{
int opt,x,y;
};
Node a[maxm];
int f[4*maxn];
int add[4*maxn];
int n,m,fa[maxn];
int dfn[maxn],size[maxn],newnum[maxn],deep[maxn];
int top[maxn],son[maxn];
int point[maxn],nxt[maxm],to[maxm];
int in[maxn],tag[maxn];
int newval[maxn];
map<pair<int,int>,int> mp;
int cnt;
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void dfs(int x,int faa,int dep)
{
deep[x]=dep;
size[x]=1;
int maxson = -1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (p==faa) continue;
fa[p]=x;
dfs(p,x,dep+1);
size[x]+=size[p];
if (size[p]>maxson)
{
maxson=size[p];
son[x]=p;
}
}
}
int tot;
void dfs1(int x,int chain)
{
newnum[x]=++tot;
//cout<<x<<" "<<tot<<"****"<<endl;
newval[tot]=1;
top[x]=chain;
if (!son[x]) return;
dfs1(son[x],chain);
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if(!newnum[p])
{
dfs1(p,p);
}
}
}
void up(int root)
{
f[root]=f[2*root]+f[2*root+1];
}
void pushdown(int root,int l,int r)
{
if (add[root]!=-1)
{
add[2*root]=add[root];
add[2*root+1]=add[root];
int mid = l+r >> 1;
f[2*root]=(mid-l+1)*add[root];
f[2*root+1]=(r-mid)*add[root];
add[root]=-1;
}
}
void build(int root,int l,int r)
{
add[root]=-1;
if(l==r)
{
f[root]=newval[l];
return;
}
int mid = l+r >> 1;
build(2*root,l,mid);
build(2*root+1,mid+1,r);
up(root);
}
void update(int root,int l,int r,int x,int y,int p)
{
if (x<=l && r<=y)
{
add[root]=p;
f[root]=(r-l+1)*p;
return;
}
pushdown(root,l,r);
int mid = l+r >> 1;
if (x<=mid) update(2*root,l,mid,x,y,p);
if (y>mid) update(2*root+1,mid+1,r,x,y,p);
up(root);
}
int query(int root,int l,int r,int x,int y)
{
if (x<=l && r<=y)
{
return f[root];
}
pushdown(root,l,r);
int mid = l+r >> 1;
int ans = 0;
if (x<=mid) ans=ans+query(2*root,l,mid,x,y);
if (y>mid) ans=ans+query(2*root+1,mid+1,r,x,y);
return ans;
}
void treeadd(int x,int y,int z)
{ while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
update(1,1,n,newnum[top[x]],newnum[x],z);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
int pre = query(1,1,n,newnum[x],newnum[x]);
update(1,1,n,newnum[x],newnum[y],z);
update(1,1,n,newnum[x],newnum[x],pre);
}
int treesum(int x,int y)
{ int ans=0;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
ans=ans+query(1,1,n,newnum[top[x]],newnum[x]);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
int pre = query(1,1,n,newnum[x],newnum[x]);
ans=ans+query(1,1,n,newnum[x],newnum[y]);
ans-=pre;
return ans;
}
int x[maxm],y[maxm];
int ffa[maxn];
int ans[maxm];
int find(int x)
{
if (ffa[x]!=x) ffa[x]=find(ffa[x]);
return ffa[x];
}
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) ffa[i]=i;
for (int i=1;i<=m;i++)
{
x[i]=read(),y[i]=read();
mp[mk(x[i],y[i])]=mp[mk(y[i],x[i])]=i;
}
int tmp=0;
while (1)
{
int opt=read();
if(opt==-1) break;
a[++tmp].opt=opt;
a[tmp].x=read();
a[tmp].y=read();
}
for (int i=1;i<=tmp;i++) if (a[i].opt==0) tag[mp[mk(a[i].x,a[i].y)]]=1;
for (int i=1;i<=m;i++)
{
if (tag[i]) continue;
int f1=find(x[i]);
int f2=find(y[i]);
if (f1==f2) continue;
ffa[f1]=f2;
addedge(x[i],y[i]);
addedge(y[i],x[i]);
in[i]=1;
}
dfs(1,0,1);
dfs1(1,1);
newval[1]=0;
build(1,1,n);
int tmp1=0;
for (int i=1;i<=m;i++)
{
if (tag[i] || in[i]) continue;
treeadd(x[i],y[i],0);
}
for (int i=tmp;i>=1;i--)
{
if (a[i].opt==0)
{
treeadd(a[i].x,a[i].y,0);
}
else
{
ans[++tmp1]=treesum(a[i].x,a[i].y);
}
}
for (int i=tmp1;i>=1;i--)
{
cout<<ans[i]<<"\n";
}
return 0;
}

洛谷2543AHOI2005]航线规划 (树剖+线段树+割边思路)的更多相关文章

  1. 洛谷P4315 月下“毛景树”(树剖+线段树)

    传送门 woc这该死的码农题…… 把每一条边转化为它连接的两点中深度较深的那一个,然后就可以用树剖+线段树对路径进行修改了 然后顺便注意在上面这种转化之后,树剖的时候不能搞$LCA$ 然后是几个注意点 ...

  2. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  3. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  4. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  5. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  6. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  7. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  8. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  9. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

随机推荐

  1. 闭包 panic recover

    闭包=函数+外层变量的引用 recover必须搭配defer使用 defer一定要在可能引发panic的语句之前定义

  2. 读《深入理解java虚拟机》小结

    之所以学习 jvm ,是因为在学习多线程相关知识时,对 volatile 关键字理解的不够透彻,总有种似懂非懂的感觉.于是通过在网上各种资料的查阅,最终将 volatile 和 jvm 联系上了,本身 ...

  3. 使用 & 进行高效率取余运算

    Java的HashMap源码中用到的(n-1)&hash这样的运算,这是一种高效的求余数的方法 结论:假设被除数是x,对于除数是2n的取余操作x%2n,都可以写成x&(2n-1),位运 ...

  4. 存储系统管理(一)——Linux系统的设备和分区管理

    1.设备名称的理解 /dev/sda1? sata硬盘,a1表示第一块硬盘中的第一个分区 /dev/cdrom 光驱 /dev/mapper/*? 系统中的虚拟设备 2.发现系统中的设备 ? fdis ...

  5. etcd学习(8)-etcd中Lease的续期

    etcd中的Lease 前言 Lease Lease 整体架构 key 如何关联 Lease Lease的续期 过期 Lease 的删除 checkpoint 机制 总结 参考 etcd中的Lease ...

  6. 免费 CDN 玩法 —— 将整个网站打包成一个图片文件

    资源合并 前端开发者都知道,过多的请求对性能影响很大.而且有些 CDN 不仅按流量收费,请求数也收费,如果网页里有大量小文件,显然不划算. 为此不少开发者将零碎的小文件进行合并优化,例如 JS/CSS ...

  7. Pytest 系列(28)- 参数化 parametrize + @allure.title() 动态生成标题

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 参数化 @pytest.ma ...

  8. 这篇 Java 基础,我吹不动了

    Hey guys,这里是程序员cxuan,欢迎你收看我最新一期的文章,这篇文章我补充了一些关于<Java基础核心总结>的内容,修改了部分错别字和语句不通顺的地方,并且对内部类.泛型等内容进 ...

  9. js实现钟表

    在网页上显示一个钟表 html: <body onload="startTime()"> <div id="txt"></div& ...

  10. Servlet处理带尾部斜杠/的URI

    有一个需求:让一个Servlet能够同时处理形如/XXX/YYY和/XXX/YYY/的URI,即URI尾部的斜杠有没有都要能处理到. 很容易想到,做两个URL Pattern/XXX/YYY和/XXX ...