题目传送门

题目大意

给出一个\(n\)个点的树,和常数\(k\),对于\(\forall i\in[1,n]\),求出:

\[\sum_{j=1}^{n} \text{dist}(i,j)^k
\]

\(n\le 5\times 10^4,k\le 150\)

思路

真的很妙,一开始完全没有思路,看了\(\texttt{y2823774827y}\)的题解之后瞬间懂了。

我们考虑对于\(i\)如何计算答案,我们发现这个指数非常不好看,于是我们可以使用第二类斯特林数展开,就跟组合数问题差不多的,变为:

\[\sum_{j=1}^{n}\sum_{d=0}^{\text{dist}(i,j)}\binom{\text{dist}(i,j)}{d}\begin{Bmatrix}k\\d\end{Bmatrix}d!
\]

交换求和顺序可以得到:

\[=\sum_{d=0}^{\min(n,k)}\begin{Bmatrix}k\\d\end{Bmatrix}d!\sum_{j=1}^{n}\binom{\text{dist}(i,j)}{d}
\]

于是,我们的问题就是如何快速求出后面那个\(\sum\)。我们想到这个东西可以拆成:

\[\binom{\text{dist}(i,j)}{d}=\binom{\text{dist}(i,j)-1}{d}+\binom{\text{dist}(i,j)-1}{d-1}
\]

于是,我们用换根\(dp\)解决这个问题了。具体见代码。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 50005
#define mod 10007
#define MAXM 155 int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
} int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;} struct edge{
int v,nxt;
}e[MAXN << 1]; int top = 1,head[MAXN]; void Add_Edge (int u,int v){
e[++ top] = edge {v,head[u]},head[u] = top;
e[++ top] = edge {u,head[v]},head[v] = top;
} int n,k,S[MAXM][MAXM],fac[MAXM],dp1[MAXN][MAXM],dp2[MAXN][MAXM],tmp[MAXM];
//dp1[u][k]表示的是\sum_{j在i的子树内(包括i)} \binom{dist(i,j)}{k}
//dp2[u][k]表示的是\sum_{j=1}^{n} \binom{dist(i,j)}{k} void dfs1 (int u,int fa){
dp1[u][0] = 1;
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs1 (v,u);
for (Int j = 1;j <= k;++ j) dp1[u][j] = add (dp1[u][j],add (dp1[v][j],dp1[v][j - 1]));
dp1[u][0] = add (dp1[u][0],dp1[v][0]);
}
} void dfs2 (int u,int fa){//换根dp
for (Int i = 0;i <= k;++ i) dp2[u][i] = dp1[u][i];
if (fa){
for (Int i = 1;i <= k;++ i) tmp[i] = dec (dp2[fa][i],add (dp1[u][i],dp1[u][i - 1]));
tmp[0] = dec (dp2[fa][0],dp1[u][0]);
for (Int i = 1;i <= k;++ i) dp2[u][i] = add (dp2[u][i],add (tmp[i],tmp[i - 1]));
dp2[u][0] = add (dp2[u][0],tmp[0]);
}
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs2 (v,u);
}
} template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} signed main(){
read (n,k),S[0][0] = fac[0] = 1;
for (Int i = 1;i <= k;fac[i] = mul (i,fac[i - 1]),++ i)
for (Int j = 1;j <= i;++ j)
S[i][j] = add (S[i - 1][j - 1],mul (j,S[i - 1][j]));
for (Int i = 2,u,v;i <= n;++ i) read (u,v),Add_Edge (u,v);
dfs1 (1,0),dfs2 (1,0);
for (Int i = 1;i <= n;++ i){
int sum = 0;
for (Int j = 0;j <= k;++ j) sum = add (sum,mul (fac[j],mul (S[k][j],dp2[i][j])));
write (sum),putchar ('\n');
}
return 0;
}

题解 Crash 的文明世界的更多相关文章

  1. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  2. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  3. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  4. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  5. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  6. [题解] LuoguP4827 [国家集训队] Crash 的文明世界

    传送门 这个题......我谔谔 首先可以考虑换根\(dp\),但到后来发现二项式定理展开过后需要维护\(k\)个值,同时每个值也要\(O(k)\)的时间按二项式定理算 当然fft优化过后就是k lo ...

  7. 【bzoj 2159】Crash 的文明世界

    Description Crash小朋友最近迷上了一款游戏——文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现在 ...

  8. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  9. 【BZOJ2159】Crash的文明世界 斯特林数+树形dp

    Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...

随机推荐

  1. webpack4 插件ProvidePlugin使用遇到的问题

    根据博客https://www.cnblogs.com/geyouneihan/p/9769808.html学习webpack4中使用ProvidePlugin遇到了自定义js无法使用的问题,解决之后 ...

  2. springboot全局异常封装案例

    @ControllerAdvice三个场景:>https://www.cnblogs.com/lenve/p/10748453.html 全局异常处理 全局数据绑定 全局数据预处理 首先定义一个 ...

  3. asp获取当前页面url

    <%Function GetLocationURL() Dim Url Dim ServerPort,ServerName,ScriptName,QueryString ServerName = ...

  4. SpringMVC-源码-图解

  5. IO和零拷贝

    I/O介绍 I/O主要为:网络IO(本质是socket文件读取).磁盘IO 每次IO,都要经由两个阶段: 第一步:将数据从文件先加载至内核内存空间(缓冲区),等待数据准备完成,时间较长 第二步:将数据 ...

  6. JDK方法区、元空间区别 & String.intern相关面试题

    一.方法区.永久代.元空间 1.方法区.永久代 方法区也是各个线程共享的内存区域,它用于存储已经被虚拟机加载的类信息.常量.静态变量.即时编译器编译后的代码等数据.方法区域又被称为"永久代& ...

  7. noip模拟35

    A. 玩游戏 考场做法用双指针向两侧更新,当左段点左移一位时,如果右端点不满足条件,则跳回肯定满足的位置.复杂度玄学 题解做法是类似最长子段和,如果有一个区间和为负,则维护的指针跳过去即可 B. 排列 ...

  8. Linux 配置Maven(避免踩坑篇)

    前言:请各大网友尊重本人原创知识分享,谨记本人博客:南国以南i 一.访问Maven官网下载压缩文件. 二.下载好的maven安装包放在磁盘的 /usr/local/ 目录下,如下图: 三.解压该压缩文 ...

  9. linux下制作img文件

    一.简介 制作img文件可以使用linux系统中的dd命令制作,Linux dd 命令用于读取.转换并输出数据.dd 可从标准输入或文件中读取数据,根据指定的格式来转换数据,再输出到文件.设备或标准输 ...

  10. lua中的sleep实现

    这篇文章主要介绍了Lua中实现sleep函数功能的4种方法,本文讲解了在一个死循环中设置一个跳出条件方法.调用系统的sleep函数法.Windows下ping命令法.socket库中select函数法 ...