题解 Crash 的文明世界
题目大意
给出一个\(n\)个点的树,和常数\(k\),对于\(\forall i\in[1,n]\),求出:
\]
\(n\le 5\times 10^4,k\le 150\)
思路
真的很妙,一开始完全没有思路,看了\(\texttt{y2823774827y}\)的题解之后瞬间懂了。
我们考虑对于\(i\)如何计算答案,我们发现这个指数非常不好看,于是我们可以使用第二类斯特林数展开,就跟组合数问题差不多的,变为:
\]
交换求和顺序可以得到:
\]
于是,我们的问题就是如何快速求出后面那个\(\sum\)。我们想到这个东西可以拆成:
\]
于是,我们用换根\(dp\)解决这个问题了。具体见代码。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define MAXN 50005
#define mod 10007
#define MAXM 155
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
}
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
struct edge{
int v,nxt;
}e[MAXN << 1];
int top = 1,head[MAXN];
void Add_Edge (int u,int v){
e[++ top] = edge {v,head[u]},head[u] = top;
e[++ top] = edge {u,head[v]},head[v] = top;
}
int n,k,S[MAXM][MAXM],fac[MAXM],dp1[MAXN][MAXM],dp2[MAXN][MAXM],tmp[MAXM];
//dp1[u][k]表示的是\sum_{j在i的子树内(包括i)} \binom{dist(i,j)}{k}
//dp2[u][k]表示的是\sum_{j=1}^{n} \binom{dist(i,j)}{k}
void dfs1 (int u,int fa){
dp1[u][0] = 1;
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs1 (v,u);
for (Int j = 1;j <= k;++ j) dp1[u][j] = add (dp1[u][j],add (dp1[v][j],dp1[v][j - 1]));
dp1[u][0] = add (dp1[u][0],dp1[v][0]);
}
}
void dfs2 (int u,int fa){//换根dp
for (Int i = 0;i <= k;++ i) dp2[u][i] = dp1[u][i];
if (fa){
for (Int i = 1;i <= k;++ i) tmp[i] = dec (dp2[fa][i],add (dp1[u][i],dp1[u][i - 1]));
tmp[0] = dec (dp2[fa][0],dp1[u][0]);
for (Int i = 1;i <= k;++ i) dp2[u][i] = add (dp2[u][i],add (tmp[i],tmp[i - 1]));
dp2[u][0] = add (dp2[u][0],tmp[0]);
}
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs2 (v,u);
}
}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
signed main(){
read (n,k),S[0][0] = fac[0] = 1;
for (Int i = 1;i <= k;fac[i] = mul (i,fac[i - 1]),++ i)
for (Int j = 1;j <= i;++ j)
S[i][j] = add (S[i - 1][j - 1],mul (j,S[i - 1][j]));
for (Int i = 2,u,v;i <= n;++ i) read (u,v),Add_Edge (u,v);
dfs1 (1,0),dfs2 (1,0);
for (Int i = 1;i <= n;++ i){
int sum = 0;
for (Int j = 0;j <= k;++ j) sum = add (sum,mul (fac[j],mul (S[k][j],dp2[i][j])));
write (sum),putchar ('\n');
}
return 0;
}
题解 Crash 的文明世界的更多相关文章
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- P4827「国家集训队」 Crash 的文明世界
「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...
- 【BZOJ2159】Crash的文明世界
[2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- 题解 [BZOJ2159] Crash的文明世界
题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...
- [题解] LuoguP4827 [国家集训队] Crash 的文明世界
传送门 这个题......我谔谔 首先可以考虑换根\(dp\),但到后来发现二项式定理展开过后需要维护\(k\)个值,同时每个值也要\(O(k)\)的时间按二项式定理算 当然fft优化过后就是k lo ...
- 【bzoj 2159】Crash 的文明世界
Description Crash小朋友最近迷上了一款游戏——文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现在 ...
- bzoj 2159: Crash 的文明世界
Time Limit: 10 Sec Memory Limit: 259 MB Submit: 480 Solved: 234[Submit][Status][Discuss] Descripti ...
- 【BZOJ2159】Crash的文明世界 斯特林数+树形dp
Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...
随机推荐
- 详细解读go语言中的map
Map map底层是由哈希表实现的 Go使用链地址法来解决键冲突. map本质上是一个指针,指向hmap 这里的buckets就是桶,bmap 每一个bucket最多可以放8个键值对,但是为了让内存排 ...
- 媒体查询media query
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Redis的配置文件
- AWVS13批量添加目标脚本
# -*-coding:utf-8-*- # @Author:malphite.tang import json import requests from queue import Queue req ...
- (1)java Spring Cloud+Spring boot+mybatis企业快速开发架构之微服务是什么?它的优缺点有哪些?
"微服务"一词来源于 Martin Fowler 的<Microservices>一文.微服务是一种架构风格,即将单体应用划分为小型的服务单元,微服务之间使用 HT ...
- java短信群发项目:
编写一个项目, 1. 以下手机号码段,添加到Map集合当中 2. 从控制台输入要发送信息的短信号码,如果要发送多个,请用英文逗号隔开,输入短信内容 3. 编写一个短信发送类,号码发送前,先判断号码是否 ...
- FastDFS 配置 Nginx 模块及访问测试
#备注:以下nginx-1.10.3源码目录根据nginx版本号不同会有相应的变化,以nginx版本号为准#一.安装 Nginx 和 fastdfs-nginx-module1,安装 Nginx 请看 ...
- 管理后台界面 详细分析(内含代码 |【前端】)RuoYi
最近在做的一个后台管理 因为关于隐私原因 只方便展示个别页面代码 不会上传项目 注意是前端代码 我把项目代码地址放在最后了 如有需要可自取学习 我会为各位兄弟详细的介绍其中各个属性的含义和用法,记 ...
- 什么是maven与maven的使用过程(例如在idea创建maven工程(重点讲讲idea创建使用maven管理的web工程,并且部署到tomcat上))
什么是maven与maven的使用过程(例如在idea创建maven工程) (重点讲讲idea创建使用maven管理的web工程项目,并且部署到tomcat服务器上) 一.什么是maven? 1, M ...
- ATR吊灯止损策略 (含有tbquant源码)
ATR吊灯止损策略定义: 做多,止损放在最高价之下N个ATR. 做空,止损放在最低价之上N个ATR. 该策略生成的止损点就像是从市场最高价的"天花板"上悬挂下来的吊灯.所以命名为A ...