首先可以思考一下每次能删去的点有什么性质。

不难发现,每次能删去的点都是入度恰好为 \(1\) 的那些点(包括 \(a_i \rightarrow b_i\) 的有向边)。 换句话说,每次能删去的点既要是树上的叶子节点,并且不会被任意一条有向边 \(a_i \rightarrow b_i\) 指向。那么再来思考一下每个点能否走后离开。

因为 \(i\) 号点只能最后离开,那么我们将 \(i\) 看作这课树的根(因为每次只能走叶子)。你会发现如果 \(i\) 不能最后走当前仅当会存在一条路径(走有向边) \(x \rightarrow y\) 使得 \(y\) 是 \(x\) 子树中的点,于是我们单次判断就能做到 \(O(nm)\) 了。那么这个判定条件有没有更为简单的描述呢?其实是存在的,你会发现如果我们将所有树边从儿子指向父亲,那么 \(i\) 不能最后走当且仅当这张有向图存在着一个环。于是这样单次判断的复杂度就能做到 \(O(n + m)\) 了。但这样的复杂度还不够,我们可能需要换一种方式思考。

既然每次判断点不方便,我们能否考虑每条有向边对每个点的影响呢?事实上是可以的,不难发现对于任意一条有向边 \(x \rightarrow y\),在以 \(y\) 为根时以 \(x\) 为根的子树内所有点为根时 \(x \rightarrow y\) 就会在树上形成一个环,那么这些点都是不能最后删除的。那么我们怎么找到这些点呢?因为我们显然不可能每次都换根,可以先钦定 \(1\) 为树根。那么你会发现存在两种情况 \(y\) 为 \(x\) 的祖先时,令 \(f\) 为 \(x \rightarrow y\) 这条链上 \(y\) 的儿子(可以 \(O(\log n)\) 倍增求出,在 [USACO19JAN]Exercise Route P 中提到),那么这些点就会是整棵树除了以 \(f\) 为根的子树内的点。那么我们在根以及 \(f\) 上打标记差分即可。对于其他情况,这些点就会是以 \(x\) 为根的子树内的点,直接打标记即可。最终我们树上差分跑一边 \(dfs\) 即可。

这样就做完了吗?事实上并没有,你会发现你忽略了有向边之间的影响。那么怎样的情况会对答案有影响呢?当且仅当形成了一条跨子树的路径 \(x \rightarrow \cdots \rightarrow y\) 其中 \(y\) 为 \(x\) 子树内的点,并且仔细分析你会发现,如果出现这种情况那么整张图是不存在这样的删除序列的。那么判掉是否对答案有贡献只需判断这张图是否有解即可,直接拓扑排序每次加入度数为 \(1\) 的点,最终如果存在没有入队的点就无解。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define dep(i, l, r) for (int i = r; i >= l; --i)
#define Next(i, u) for (int i = h[u]; i; i = e[i].next)
const int N = 100000 + 5;
const int M = 20 + 5;
struct edge {
int v, next;
}e[N * 3];
bool book[N];
int n, m, u, v, tot, cnt, x[N], y[N], d[N], h[N], c[N], sz[N], dfn[N], dep[N], ans[N], f[N][M];
queue <int> Q;
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void add(int u, int v) {
e[++tot].v = v, e[tot].next = h[u], h[u] = tot, ++d[v];
}
void dfs(int u, int fa){
f[u][0] = fa, sz[u] = 1, dfn[u] = ++cnt, dep[u] = dep[fa] + 1;
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
dfs(v, u), sz[u] += sz[v];
}
}
int find(int x, int y) {
dep(i, 0, 20) if(dep[f[x][i]] > dep[y]) x = f[x][i];
return x;
}
void calc(int u, int fa, int tmp){
ans[u] = tmp + c[u];
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
calc(v, u, tmp + c[u]);
}
}
int main() {
n = read(), m = read();
rep(i, 1, n - 1) u = read(), v = read(), add(u, v), add(v, u);
dfs(1, 0);
rep(j, 1, 20) rep(i, 1, n) f[i][j] = f[f[i][j - 1]][j - 1];
rep(i, 1, m) {
x[i] = u = read(), y[i] = v = read();
if(dfn[v] >= dfn[u] && dfn[v] <= dfn[u] + sz[u] - 1) ++c[1], --c[find(v, u)];
else ++c[u];
}
calc(1, 0, 0);
rep(i, 1, m) add(x[i], y[i]);
rep(i, 1, n) if(d[i] == 1) Q.push(i), book[i] = true;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(book[v]) continue;
--d[v]; if(d[v] == 1) Q.push(v), book[v] = 1;
}
}
rep(i, 1, n) if(!book[i]) {
rep(j, 1, n) puts("0");
return 0;
}
rep(i, 1, n) printf(ans[i] > 0 ? "0\n" : "1\n");
return 0;
}

值得一提的是,判定性或定义型问题一定要去思考判定条件。另外,反向考虑每条边对答案的影响也是非常重要的。当发现自己的做法出现问题或考虑不全的时候,不要慌张,仔细分析看看能否以一种简单的方式解决这些问题。

[USACO18DEC]The Cow Gathering P的更多相关文章

  1. [USACO18DEC]The Cow Gathering

    Description: 给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点 Hint: \(n,m \le 10^5\) Solution: 手模 ...

  2. P5157 [USACO18DEC]The Cow Gathering

    首先考虑怎么check一个点是否能被最后一个删除. 可以这么建图,以这个点建有根树,边全部向上指,再加上剩下的有向边. 很明显,这里的一条边的定义就变成了只有删去这个点,才可以删去它指向的点. 因此, ...

  3. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  4. 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering

    题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...

  5. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  6. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  7. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  8. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. 【项目管理】《IT项目管理》Kathy Schwalbe 第1章 总论

    博主:海底淤泥 1.为什么项目管理领域引起了大家的兴趣 1.更好控制财力.物力.人力资源 2.改进客户关系 3.缩短开发时间 4.降低成本和提高生产率 5.提高质量和可靠性 6.更大的边际利益空间 7 ...

  2. 【机器学习】Pandas库练习-获取yahoo金融苹果公司的股票数据

    # 获取yahoo金融苹果公司的股票数据. # 1.分析拉取的数据,找到收盘数据列的列名. # 2.绘制收盘价格柱状图. # 3.分析拉取的数据涨跌率,股价移动平均和波动率. # 4. 找出开盘价和收 ...

  3. 【机器学*】k*邻算法-03

    心得体会: 需要思考如何将现实对象转化为特征向量,设置特征向量时记住鸭子定律1 鸭子定律1 如果走路像鸭子.说话像鸭子.长得像鸭子.啄食也像鸭子,那它肯定就是一只鸭子 事物的外在特征就是事物本质的表现 ...

  4. Notepad++汉化教程

    Notepad++汉化方法总结 Notepad++系统只带了中文语言包,不需要像其他软件一样破解 打开Notepad++(通过文本文件右键选择以Notepad++打开或者找到Notepad++的快捷方 ...

  5. Order Statistic

    目录 The Order Statistic 引理1 的一些基本性质 顺序统计量的分布 顺序统计量的条件分布 特殊分布的特殊性质 Order Statistic The Order Statistic ...

  6. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

    目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...

  7. VUE3 之 循环渲染

    1. 概述 老话说的好:单打独斗是不行的,要懂得合作. 言归正传,今天我们来聊聊 VUE3 的 循环渲染. 2. 循环渲染 2.1 循环渲染数组 <body> <div id=&qu ...

  8. Vue的安装及使用(Vue的三种安装使用方式)

    vue是一个JavaMVVM库,是一套用于构建用户界面的渐进式框架,是初创项目的首选前端框架.它是以数据驱动和组件化的思想构建的,采用自底向上增量开发的设计.它是轻量级的,它有很多独立的功能或库,我们 ...

  9. Java Web程序设计笔记 • 【第2章 JSP基础】

    全部章节   >>>> 本章目录 2.1 JSP 简介 2.1.1 JSP 概述 2.1.2 开发第一个 JSP 页面 2.1.3 JSP 处理流程 2.1.4 实践练习 2. ...

  10. rabbimq集群搭建报错:Error: unable TO perform an operation ON node 'rabbit@test3'. Please see diagnostics information AND suggestions below.

    在搭建rabbitmq集群的时候,添加内存节点时,抛出异常:Error: unable TO perform an operation ON node 'rabbit@test3'. Please s ...