为了使得方案的形式较为单一,不妨强制物品体积为1或$\ge \lceil\frac{w}{2}\rceil$,那么假设最终有$x$个1且$\ge \lceil\frac{w}{2}\rceil$的物品体积依次为$a_{1},a_{2},...,a_{n-x}$,不难发现方案数即为$\sum_{i=1}^{n-x}{x\choose w-a_{i}}$

暴力枚举$x$,并不妨再强制方案数恰为$k$(而不是模$p$意义下),此时即选不超过$n-x$个${x\choose i}$使得其和恰为$k$(其中$i\in [0,\lfloor\frac{w}{2}\rfloor]$,由于$w\ge 50$不妨变为$\in [0,\lfloor\frac{x}{2}\rfloor]$,即问题与$w$无关)

每一次选$i=\max_{0\le j\le 8,{16\choose j}\le k}j$,由于${x\choose 0}=1$,重复此过程最终总可得到$k$,并考虑所有$k\in [0,2\cdot 10^{4}]$后可以发现只需要取$x=13$或$14$即可保证有解

时间复杂度为$o(tn)$,可以通过

(dark_bzoj上该题似乎没有spj)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 15
4 vector<int>v;
5 int t,n,m,x,w,C[N][N];
6 int main(){
7 for(int i=0;i<N;i++){
8 C[i][0]=C[i][i]=1;
9 for(int j=1;j<i;j++)C[i][j]=C[i-1][j-1]+C[i-1][j];
10 }
11 scanf("%d",&t);
12 while (t--){
13 scanf("%d%*d%d",&w,&n);
14 for(int x=13;x<=14;x++){
15 m=n;
16 v.clear();
17 for(int i=0;i<x;i++)v.push_back(1);
18 for(int i=(x>>1);i>=0;i--){
19 for(int j=0;j<m/C[x][i];j++)v.push_back(w-i);
20 m%=C[x][i];
21 }
22 if (v.size()<=40){
23 printf("%d\n",(int)v.size());
24 for(int i=0;i+1<v.size();i++)printf("%d ",v[i]);
25 printf("%d\n",v.back());
26 break;
27 }
28 }
29 }
30 return 0;
31 }

[bzoj4971]记忆中的背包的更多相关文章

  1. BZOJ 4971: [Lydsy1708月赛]记忆中的背包

    神仙构造 分成x个1和一堆>=w-x的大物品 (x<=20 w>=50) 则拼成w的方案中有且仅有一个大物品 若最终序列中有x个1,有一个大物品为w-k,可以提供C(x,k)种方案 ...

  2. 洛谷 P4125 [WC2012]记忆中的水杉树【扫描线+set+线段树】

    我没有找到能在bzojAC的代码--当然我也WA了--但是我在洛谷过了,那就假装过了吧 minmax线段树一开始写的只能用min更新min,max更新max,实际上是可以互相更新的-- 首先看第二问, ...

  3. [WC2012]记忆中的水杉树

    https://www.luogu.org/problemnew/show/P4125 题解 首先一开始所有的线段互不相交. 那么对于第二问来说,一定存在一种方法使得所有线段都朝着一个方向动. 比如说 ...

  4. 记忆中的像素块褪色了吗?用开源的体素编辑器重新做个 3D 的吧!

    本文适合对图形表现有兴趣的美术或者开发人员 本文作者:HelloGitHub-Joey 早期的的显示设备像素颗粒较大,使得显示内容的颗粒感严重,像是由一堆方块组成的.比较好的例子就是 GBA 上的游戏 ...

  5. 借助Algorithmia网站API:用AI给黑白照片上色,复现记忆中的旧时光

    先看DEMOhttps://demos.algorithmia.com/colorize-photos/ 了解ColorfulImageColorizationhttps://algorithmia. ...

  6. Element ui 中使用table组件实现分页记忆选中

    我们再用vue和element-ui,或者其他的表格的时候,可能需要能记忆翻页勾选,那么实现以下几个方法就ok了 示例如下 <el-table :data="tableData&quo ...

  7. BZOJ 3163: [Heoi2013]Eden的新背包问题( 背包dp )

    从左到右, 从右到左分别dp一次, 然后就可以回答询问了. ---------------------------------------------------------- #include< ...

  8. 关于css中pointer-events属性的怪异行为

    在我的记忆中pointer-events就是用来进行事件穿透的,也就是说,如果给父元素设置了pointer-events:none,那么父元素不再监听鼠标事件事件(类似于touch,click这样的) ...

  9. 背包九讲 && 题目

    ★.背包求方案数的时候,多重背包是不行的,因为产生重复的背包会有多种情况. ★.背包记录路径的时候,其实是不行的,因为更新了12的最优解,如果它依赖于6这个背包,然后你后面改变了6这个背包,就GG 1 ...

随机推荐

  1. mysql从零开始之MySQL 选择数据库

    MySQL 选择数据库 在你连接到 MySQL 数据库后,可能有多个可以操作的数据库,所以你需要选择你要操作的数据库. 从命令提示窗口中选择MySQL数据库 在 mysql> 提示窗口中可以很简 ...

  2. mysql从零开始之MySQL PHP 语法

    MySQL PHP 语法 MySQL 可应用于多种语言,包括 PERL, C, C++, JAVA 和 PHP,在这些语言中,MySQL 在 PHP 的 web 开发中是应用最广泛. 在本教程中我们大 ...

  3. Edit Step Ladders - UVA 10029

    题意 题目链接(Virtual Judge):Edit Step Ladders - UVA 10029 题意: 如果单词 \(x\) 能通过添加.删除或修改一个字母变换为单词 \(y\),则称单词 ...

  4. Pandas高级教程之:时间处理

    目录 简介 时间分类 Timestamp DatetimeIndex date_range 和 bdate_range origin 格式化 Period DateOffset 作为index 切片和 ...

  5. 从零入门 Serverless | 使用 Spot 低成本运行 Job 任务

    作者 | 代志锋(云果)  阿里云技术专家 本文整理自<Serverless 技术公开课>,点击链接即可免费听课:https://developer.aliyun.com/learning ...

  6. 每日总结:String类(2021.10.6)

    String创建的字符串存储在公共池中 如: String s1="Runoob": new创建的字符串对象在堆上 如: String s2=new String("Ru ...

  7. 题解 CF1103E Radix sum

    题目传送门 题目大意 给出一个\(n\)个数的序列\(a_{1,2,..,n}\),可以选\(n\)次,每次可以选与上次选的相同的数,问对于\(\forall p\in[0,n-1]\)满足选出来的数 ...

  8. NX二次开发-调内部函数UGS::UICOMP_enum::set_width(int)更改BlockUI的枚举控件宽度

    版本 NX11+VS2013 内容说明 这个内部函数的设置方法,我之前不会,是QQ群里的一位大佬分享出来的. 关于这块,我也百度搜了一下,找到了几个相关的. 1.直接手动修改BlockUI界面 在低版 ...

  9. 【UE4 设计模式】策略模式 Strategy Pattern

    概述 描述 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法的变化不会影响到使用算法的客户. 套路 Context(环境类) 负责使用算法策略,其中维持了一 ...

  10. 论文解读丨表格识别模型TableMaster

    摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识 ...