int __cdecl sub_401340(unsigned __int8 *a1)
{
int v2; // [esp+18h] [ebp-D0h]
int v3; // [esp+1Ch] [ebp-CCh]
int v4; // [esp+20h] [ebp-C8h]
int v5; // [esp+24h] [ebp-C4h]
int v6; // [esp+28h] [ebp-C0h]
int v7; // [esp+2Ch] [ebp-BCh]
int v8; // [esp+30h] [ebp-B8h]
int v9; // [esp+34h] [ebp-B4h]
int v10; // [esp+38h] [ebp-B0h]
int v11; // [esp+3Ch] [ebp-ACh]
int v12; // [esp+40h] [ebp-A8h]
int v13; // [esp+44h] [ebp-A4h]
int v14; // [esp+48h] [ebp-A0h]
int v15; // [esp+4Ch] [ebp-9Ch]
int v16; // [esp+50h] [ebp-98h]
int v17; // [esp+54h] [ebp-94h]
int v18; // [esp+58h] [ebp-90h]
int v19; // [esp+5Ch] [ebp-8Ch]
int v20; // [esp+60h] [ebp-88h]
int v21; // [esp+64h] [ebp-84h]
int v22; // [esp+68h] [ebp-80h]
int v23; // [esp+6Ch] [ebp-7Ch]
int v24; // [esp+70h] [ebp-78h]
int v25; // [esp+74h] [ebp-74h]
int v26; // [esp+78h] [ebp-70h]
int v27; // [esp+7Ch] [ebp-6Ch]
int v28; // [esp+80h] [ebp-68h]
int v29; // [esp+84h] [ebp-64h]
int v30; // [esp+88h] [ebp-60h]
int v31; // [esp+8Ch] [ebp-5Ch]
int v32; // [esp+90h] [ebp-58h]
int v33; // [esp+94h] [ebp-54h]
int v34; // [esp+98h] [ebp-50h]
int v35; // [esp+9Ch] [ebp-4Ch]
int v36; // [esp+A0h] [ebp-48h]
int v37; // [esp+A4h] [ebp-44h]
int v38; // [esp+A8h] [ebp-40h]
int v39; // [esp+ACh] [ebp-3Ch]
int v40; // [esp+B0h] [ebp-38h]
int v41; // [esp+B4h] [ebp-34h]
int v42; // [esp+B8h] [ebp-30h]
int v43; // [esp+BCh] [ebp-2Ch]
int v44; // [esp+C0h] [ebp-28h]
int v45; // [esp+C4h] [ebp-24h]
int v46; // [esp+C8h] [ebp-20h]
int v47; // [esp+CCh] [ebp-1Ch]
int v48; // [esp+D0h] [ebp-18h]
int v49; // [esp+D4h] [ebp-14h]
int v50; // [esp+D8h] [ebp-10h]
int i; // [esp+DCh] [ebp-Ch] v2 = 34 * a1[3] + 12 * *a1 + 53 * a1[1] + 6 * a1[2] + 58 * a1[4] + 36 * a1[5] + a1[6];
v3 = 27 * a1[4] + 73 * a1[3] + 12 * a1[2] + 83 * *a1 + 85 * a1[1] + 96 * a1[5] + 52 * a1[6];
v4 = 24 * a1[2] + 78 * *a1 + 53 * a1[1] + 36 * a1[3] + 86 * a1[4] + 25 * a1[5] + 46 * a1[6];
v5 = 78 * a1[1] + 39 * *a1 + 52 * a1[2] + 9 * a1[3] + 62 * a1[4] + 37 * a1[5] + 84 * a1[6];
v6 = 48 * a1[4] + 6 * a1[1] + 23 * *a1 + 14 * a1[2] + 74 * a1[3] + 12 * a1[5] + 83 * a1[6];
v7 = 15 * a1[5] + 48 * a1[4] + 92 * a1[2] + 85 * a1[1] + 27 * *a1 + 42 * a1[3] + 72 * a1[6];
v8 = 26 * a1[5] + 67 * a1[3] + 6 * a1[1] + 4 * *a1 + 3 * a1[2] + 68 * a1[6];
v9 = 34 * a1[10] + 12 * a1[7] + 53 * a1[8] + 6 * a1[9] + 58 * a1[11] + 36 * a1[12] + a1[13];
v10 = 27 * a1[11] + 73 * a1[10] + 12 * a1[9] + 83 * a1[7] + 85 * a1[8] + 96 * a1[12] + 52 * a1[13];
v11 = 24 * a1[9] + 78 * a1[7] + 53 * a1[8] + 36 * a1[10] + 86 * a1[11] + 25 * a1[12] + 46 * a1[13];
v12 = 78 * a1[8] + 39 * a1[7] + 52 * a1[9] + 9 * a1[10] + 62 * a1[11] + 37 * a1[12] + 84 * a1[13];
v13 = 48 * a1[11] + 6 * a1[8] + 23 * a1[7] + 14 * a1[9] + 74 * a1[10] + 12 * a1[12] + 83 * a1[13];
v14 = 15 * a1[12] + 48 * a1[11] + 92 * a1[9] + 85 * a1[8] + 27 * a1[7] + 42 * a1[10] + 72 * a1[13];
v15 = 26 * a1[12] + 67 * a1[10] + 6 * a1[8] + 4 * a1[7] + 3 * a1[9] + 68 * a1[13];
v16 = 34 * a1[17] + 12 * a1[14] + 53 * a1[15] + 6 * a1[16] + 58 * a1[18] + 36 * a1[19] + a1[20];
v17 = 27 * a1[18] + 73 * a1[17] + 12 * a1[16] + 83 * a1[14] + 85 * a1[15] + 96 * a1[19] + 52 * a1[20];
v18 = 24 * a1[16] + 78 * a1[14] + 53 * a1[15] + 36 * a1[17] + 86 * a1[18] + 25 * a1[19] + 46 * a1[20];
v19 = 78 * a1[15] + 39 * a1[14] + 52 * a1[16] + 9 * a1[17] + 62 * a1[18] + 37 * a1[19] + 84 * a1[20];
v20 = 48 * a1[18] + 6 * a1[15] + 23 * a1[14] + 14 * a1[16] + 74 * a1[17] + 12 * a1[19] + 83 * a1[20];
v21 = 15 * a1[19] + 48 * a1[18] + 92 * a1[16] + 85 * a1[15] + 27 * a1[14] + 42 * a1[17] + 72 * a1[20];
v22 = 26 * a1[19] + 67 * a1[17] + 6 * a1[15] + 4 * a1[14] + 3 * a1[16] + 68 * a1[20];
v23 = 34 * a1[24] + 12 * a1[21] + 53 * a1[22] + 6 * a1[23] + 58 * a1[25] + 36 * a1[26] + a1[27];
v24 = 27 * a1[25] + 73 * a1[24] + 12 * a1[23] + 83 * a1[21] + 85 * a1[22] + 96 * a1[26] + 52 * a1[27];
v25 = 24 * a1[23] + 78 * a1[21] + 53 * a1[22] + 36 * a1[24] + 86 * a1[25] + 25 * a1[26] + 46 * a1[27];
v26 = 78 * a1[22] + 39 * a1[21] + 52 * a1[23] + 9 * a1[24] + 62 * a1[25] + 37 * a1[26] + 84 * a1[27];
v27 = 48 * a1[25] + 6 * a1[22] + 23 * a1[21] + 14 * a1[23] + 74 * a1[24] + 12 * a1[26] + 83 * a1[27];
v28 = 15 * a1[26] + 48 * a1[25] + 92 * a1[23] + 85 * a1[22] + 27 * a1[21] + 42 * a1[24] + 72 * a1[27];
v29 = 26 * a1[26] + 67 * a1[24] + 6 * a1[22] + 4 * a1[21] + 3 * a1[23] + 68 * a1[27];
v30 = 34 * a1[31] + 12 * a1[28] + 53 * a1[29] + 6 * a1[30] + 58 * a1[32] + 36 * a1[33] + a1[34];
v31 = 27 * a1[32] + 73 * a1[31] + 12 * a1[30] + 83 * a1[28] + 85 * a1[29] + 96 * a1[33] + 52 * a1[34];
v32 = 24 * a1[30] + 78 * a1[28] + 53 * a1[29] + 36 * a1[31] + 86 * a1[32] + 25 * a1[33] + 46 * a1[34];
v33 = 78 * a1[29] + 39 * a1[28] + 52 * a1[30] + 9 * a1[31] + 62 * a1[32] + 37 * a1[33] + 84 * a1[34];
v34 = 48 * a1[32] + 6 * a1[29] + 23 * a1[28] + 14 * a1[30] + 74 * a1[31] + 12 * a1[33] + 83 * a1[34];
v35 = 15 * a1[33] + 48 * a1[32] + 92 * a1[30] + 85 * a1[29] + 27 * a1[28] + 42 * a1[31] + 72 * a1[34];
v36 = 26 * a1[33] + 67 * a1[31] + 6 * a1[29] + 4 * a1[28] + 3 * a1[30] + 68 * a1[34];
v37 = 34 * a1[38] + 12 * a1[35] + 53 * a1[36] + 6 * a1[37] + 58 * a1[39] + 36 * a1[40] + a1[41];
v38 = 27 * a1[39] + 73 * a1[38] + 12 * a1[37] + 83 * a1[35] + 85 * a1[36] + 96 * a1[40] + 52 * a1[41];
v39 = 24 * a1[37] + 78 * a1[35] + 53 * a1[36] + 36 * a1[38] + 86 * a1[39] + 25 * a1[40] + 46 * a1[41];
v40 = 78 * a1[36] + 39 * a1[35] + 52 * a1[37] + 9 * a1[38] + 62 * a1[39] + 37 * a1[40] + 84 * a1[41];
v41 = 48 * a1[39] + 6 * a1[36] + 23 * a1[35] + 14 * a1[37] + 74 * a1[38] + 12 * a1[40] + 83 * a1[41];
v42 = 15 * a1[40] + 48 * a1[39] + 92 * a1[37] + 85 * a1[36] + 27 * a1[35] + 42 * a1[38] + 72 * a1[41];
v43 = 26 * a1[40] + 67 * a1[38] + 6 * a1[36] + 4 * a1[35] + 3 * a1[37] + 68 * a1[41];
v44 = 34 * a1[45] + 12 * a1[42] + 53 * a1[43] + 6 * a1[44] + 58 * a1[46] + 36 * a1[47] + a1[48];
v45 = 27 * a1[46] + 73 * a1[45] + 12 * a1[44] + 83 * a1[42] + 85 * a1[43] + 96 * a1[47] + 52 * a1[48];
v46 = 24 * a1[44] + 78 * a1[42] + 53 * a1[43] + 36 * a1[45] + 86 * a1[46] + 25 * a1[47] + 46 * a1[48];
v47 = 78 * a1[43] + 39 * a1[42] + 52 * a1[44] + 9 * a1[45] + 62 * a1[46] + 37 * a1[47] + 84 * a1[48];
v48 = 48 * a1[46] + 6 * a1[43] + 23 * a1[42] + 14 * a1[44] + 74 * a1[45] + 12 * a1[47] + 83 * a1[48];
v49 = 15 * a1[47] + 48 * a1[46] + 92 * a1[44] + 85 * a1[43] + 27 * a1[42] + 42 * a1[45] + 72 * a1[48];
v50 = 26 * a1[47] + 67 * a1[45] + 6 * a1[43] + 4 * a1[42] + 3 * a1[44] + 68 * a1[48];
for ( i = 0; i <= 48; ++i )
{
if ( *(&v2 + i) != dword_404000[i] )
{
printf("GG");
exit(0);
}
}
return puts("TQL");
}

这题讲道理,算送分,考个z3的使用,这玩意求多元一次方程,很香,星盟的里面有一题和这题类似,不过比这个

恶心多了,那个32方程,而且还有位运算,主要是求几十个数组,要分离数据,对方程的处理,上次看到夜影师傅的wp里面有个这类题,直接元编程,把代码编出来,是真的狠。

1.首先shift+e 取出我们要的数据



将c格式改成py的

2.利用z3来求解,同时处理方程,我使用replace,替换的,也是偷学的2333,就不放代码了,直接上脚本。

from z3 import *
v1 =[18564,
37316,
32053,
33278,
23993,
33151,
15248,
13719,
34137,
27391,
28639,
18453,
28465,
12384,
20780,
45085,
35827,
37243,
26037,
39409,
17583,
20825,
44474,
35138,
36914,
25918,
38915,
17672,
21219,
43935,
37072,
39359,
27793,
41447,
18098,
21335,
46164,
38698,
39084,
29205,
40913,
19117,
21786,
46573,
38322,
41017,
29298,
43409,
19655
]
solver=Solver()
a1=[Int("u[%d]"%i) for i in range(49)] solver.add(v1[0]== 34 * a1[3] + 12 * a1[0] + 53 * a1[1] + 6 * a1[2] + 58 * a1[4] + 36 * a1[5] + a1[6])
solver.add(v1[1] == 27 * a1[4] + 73 * a1[3] + 12 * a1[2] + 83 *a1[0] + 85 * a1[1] + 96 * a1[5] + 52 * a1[6]) solver.add(v1[2] == 24 * a1[2] + 78 * a1[0] + 53 * a1[1] + 36 * a1[3] + 86 * a1[4] + 25 * a1[5] + 46 * a1[6])
solver.add(v1[3] == 78 * a1[1] + 39 * a1[0] + 52 * a1[2] + 9 * a1[3] + 62 * a1[4] + 37 * a1[5] + 84 * a1[6])
solver.add(v1[4] == 48 * a1[4] + 6 * a1[1] + 23 *a1[0] + 14 * a1[2] + 74 * a1[3] + 12 * a1[5] + 83 * a1[6])
solver.add(v1[5] == 15 * a1[5] + 48 * a1[4] + 92 * a1[2] + 85 * a1[1] + 27 * a1[0]+ 42 * a1[3] + 72 * a1[6])
solver.add(v1[6] == 26 * a1[5] + 67 * a1[3] + 6 * a1[1] + 4 * a1[0] + 3 * a1[2] + 68 * a1[6])
solver.add(v1[7] == 34 * a1[10] + 12 * a1[7] + 53 * a1[8] + 6 * a1[9] + 58 * a1[11] + 36 * a1[12] + a1[13])
solver.add(v1[8] == 27 * a1[11] + 73 * a1[10] + 12 * a1[9] + 83 * a1[7] + 85 * a1[8] + 96 * a1[12] + 52 * a1[13])
solver.add(v1[9] == 24 * a1[9] + 78 * a1[7] + 53 * a1[8] + 36 * a1[10] + 86 * a1[11] + 25 * a1[12] + 46 * a1[13])
solver.add(v1[10] == 78 * a1[8] + 39 * a1[7] + 52 * a1[9] + 9 * a1[10] + 62 * a1[11] + 37 * a1[12] + 84 * a1[13])
solver.add(v1[11] == 48 * a1[11] + 6 * a1[8] + 23 * a1[7] + 14 * a1[9] + 74 * a1[10] + 12 * a1[12] + 83 * a1[13])
solver.add(v1[12] == 15 * a1[12] + 48 * a1[11] + 92 * a1[9] + 85 * a1[8] + 27 * a1[7] + 42 * a1[10] + 72 * a1[13])
solver.add(v1[13] == 26 * a1[12] + 67 * a1[10] + 6 * a1[8] + 4 * a1[7] + 3 * a1[9] + 68 * a1[13])
solver.add(v1[14] == 34 * a1[17] + 12 * a1[14] + 53 * a1[15] + 6 * a1[16] + 58 * a1[18] + 36 * a1[19] + a1[20])
solver.add(v1[15] == 27 * a1[18] + 73 * a1[17] + 12 * a1[16] + 83 * a1[14] + 85 * a1[15] + 96 * a1[19] + 52 * a1[20])
solver.add(v1[16] == 24 * a1[16] + 78 * a1[14] + 53 * a1[15] + 36 * a1[17] + 86 * a1[18] + 25 * a1[19] + 46 * a1[20])
solver.add(v1[17] == 78 * a1[15] + 39 * a1[14] + 52 * a1[16] + 9 * a1[17] + 62 * a1[18] + 37 * a1[19] + 84 * a1[20])
solver.add(v1[18] == 48 * a1[18] + 6 * a1[15] + 23 * a1[14] + 14 * a1[16] + 74 * a1[17] + 12 * a1[19] + 83 * a1[20])
solver.add(v1[19] == 15 * a1[19] + 48 * a1[18] + 92 * a1[16] + 85 * a1[15] + 27 * a1[14] + 42 * a1[17] + 72 * a1[20])
solver.add(v1[20] == 26 * a1[19] + 67 * a1[17] + 6 * a1[15] + 4 * a1[14] + 3 * a1[16] + 68 * a1[20])
solver.add(v1[21] == 34 * a1[24] + 12 * a1[21] + 53 * a1[22] + 6 * a1[23] + 58 * a1[25] + 36 * a1[26] + a1[27])
solver.add(v1[22] == 27 * a1[25] + 73 * a1[24] + 12 * a1[23] + 83 * a1[21] + 85 * a1[22] + 96 * a1[26] + 52 * a1[27])
solver.add( v1[23] == 24 * a1[23] + 78 * a1[21] + 53 * a1[22] + 36 * a1[24] + 86 * a1[25] + 25 * a1[26] + 46 * a1[27])
solver.add(v1[24] == 78 * a1[22] + 39 * a1[21] + 52 * a1[23] + 9 * a1[24] + 62 * a1[25] + 37 * a1[26] + 84 * a1[27])
solver.add(v1[25] == 48 * a1[25] + 6 * a1[22] + 23 * a1[21] + 14 * a1[23] + 74 * a1[24] + 12 * a1[26] + 83 * a1[27])
solver.add(v1[26] == 15 * a1[26] + 48 * a1[25] + 92 * a1[23] + 85 * a1[22] + 27 * a1[21] + 42 * a1[24] + 72 * a1[27])
solver.add(v1[27] == 26 * a1[26] + 67 * a1[24] + 6 * a1[22] + 4 * a1[21] + 3 * a1[23] + 68 * a1[27])
solver.add(v1[28] == 34 * a1[31] + 12 * a1[28] + 53 * a1[29] + 6 * a1[30] + 58 * a1[32] + 36 * a1[33] + a1[34])
solver.add(v1[29] == 27 * a1[32] + 73 * a1[31] + 12 * a1[30] + 83 * a1[28] + 85 * a1[29] + 96 * a1[33] + 52 * a1[34])
solver.add(v1[30] == 24 * a1[30] + 78 * a1[28] + 53 * a1[29] + 36 * a1[31] + 86 * a1[32] + 25 * a1[33] + 46 * a1[34])
solver.add(v1[31] == 78 * a1[29] + 39 * a1[28] + 52 * a1[30] + 9 * a1[31] + 62 * a1[32] + 37 * a1[33] + 84 * a1[34])
solver.add(v1[32] == 48 * a1[32] + 6 * a1[29] + 23 * a1[28] + 14 * a1[30] + 74 * a1[31] + 12 * a1[33] + 83 * a1[34])
solver.add(v1[33] == 15 * a1[33] + 48 * a1[32] + 92 * a1[30] + 85 * a1[29] + 27 * a1[28] + 42 * a1[31] + 72 * a1[34])
solver.add(v1[34] == 26 * a1[33] + 67 * a1[31] + 6 * a1[29] + 4 * a1[28] + 3 * a1[30] + 68 * a1[34])
solver.add(v1[35] == 34 * a1[38] + 12 * a1[35] + 53 * a1[36] + 6 * a1[37] + 58 * a1[39] + 36 * a1[40] + a1[41])
solver.add(v1[36] == 27 * a1[39] + 73 * a1[38] + 12 * a1[37] + 83 * a1[35] + 85 * a1[36] + 96 * a1[40] + 52 * a1[41])
solver.add(v1[37] == 24 * a1[37] + 78 * a1[35] + 53 * a1[36] + 36 * a1[38] + 86 * a1[39] + 25 * a1[40] + 46 * a1[41])
solver.add(v1[38] == 78 * a1[36] + 39 * a1[35] + 52 * a1[37] + 9 * a1[38] + 62 * a1[39] + 37 * a1[40] + 84 * a1[41])
solver.add(v1[39] == 48 * a1[39] + 6 * a1[36] + 23 * a1[35] + 14 * a1[37] + 74 * a1[38] + 12 * a1[40] + 83 * a1[41])
solver.add(v1[40] == 15 * a1[40] + 48 * a1[39] + 92 * a1[37] + 85 * a1[36] + 27 * a1[35] + 42 * a1[38] + 72 * a1[41])
solver.add(v1[41] == 26 * a1[40] + 67 * a1[38] + 6 * a1[36] + 4 * a1[35] + 3 * a1[37] + 68 * a1[41])
solver.add(v1[42] == 34 * a1[45] + 12 * a1[42] + 53 * a1[43] + 6 * a1[44] + 58 * a1[46] + 36 * a1[47] + a1[48])
solver.add(v1[43] == 27 * a1[46] + 73 * a1[45] + 12 * a1[44] + 83 * a1[42] + 85 * a1[43] + 96 * a1[47] + 52 * a1[48])
solver.add(v1[44] == 24 * a1[44] + 78 * a1[42] + 53 * a1[43] + 36 * a1[45] + 86 * a1[46] + 25 * a1[47] + 46 * a1[48])
solver.add(v1[45] == 78 * a1[43] + 39 * a1[42] + 52 * a1[44] + 9 * a1[45] + 62 * a1[46] + 37 * a1[47] + 84 * a1[48])
solver.add(v1[46] == 48 * a1[46] + 6 * a1[43] + 23 * a1[42] + 14 * a1[44] + 74 * a1[45] + 12 * a1[47] + 83 * a1[48])
solver.add(v1[47] == 15 * a1[47] + 48 * a1[46] + 92 * a1[44] + 85 * a1[43] + 27 * a1[42] + 42 * a1[45] + 72 * a1[48])
solver.add(v1[48] == 26 * a1[47] + 67 * a1[45] + 6 * a1[43] + 4 * a1[42] + 3 * a1[44] + 68 * a1[48])
print(solver.check())
print(str(solver.model()).replace(",",""))
u=[i for i in range(49)]
u[42] = 101
u[45] = 105
u[22] = 108
u[47] = 103
u[30] = 115
u[18] = 97
u[26] = 114
u[14] = 108
u[35] = 121
u[16] = 110
u[21] = 97
u[37] = 105
u[40] = 101
u[43] = 115
u[23] = 103
u[24] = 101
u[4] = 123
u[32] = 118
u[33] = 101
u[17] = 101
u[25] = 98
u[44] = 116
u[36] = 95
u[0] = 78
u[11] = 49
u[12] = 57
u[28] = 95
u[31] = 95
u[46] = 110
u[7] = 116
u[2] = 84
u[8] = 102
u[19] = 114
u[39] = 116
u[1] = 67
u[9] = 50
u[15] = 105
u[3] = 70
u[10] = 48
u[5] = 110
u[29] = 105
u[38] = 110
u[48] = 125
u[41] = 114
u[34] = 114
u[27] = 97
u[20] = 95
u[13] = 95
u[6] = 99
f=""
for j in range(49):
f+=chr(u[j])
print(f)

CG-CTF 签到的更多相关文章

  1. web做题记录

    2020.1.19 南邮ctf 签到题 题目:key在哪里? 在火狐浏览器中右键选择打开查看源代码,在源代码可以看到如下 因为是第一次做这个题,不知道提交啥,我先提交了“admiaanaaaaaaaa ...

  2. 记一次CTF的签到题

    开篇 打开题目网站 首先看到的是一个人博客,功能点非常少,功能较多的页面就是留言板了 一开始没啥思路,就想着抓包能不能找到SQL注入无果,在这个地方卡了很久 柳暗花明 在乱点的时候,无意中发现题目中的 ...

  3. CTF中那些脑洞大开的编码和加密

    0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到类似这样的问题:表哥,你知道这是什么加密吗?其实CTF中脑洞密码题(非现代加密方式)一般都是各种古典密码的变形,一般出题者会对密文进 ...

  4. 社团的CTF逆向题WriteUp

    最近社团弄了CTF比赛,然后我就帮忙写了逆向的题目,这里写一下WriteUp,题目和源码在附件中给出 一个简单的逆向:one_jmp_to_flag.exe 这题算是签到题,直接OD智能搜索就完事了, ...

  5. 巅峰极客CTF writeup[上]

    经验教训 1.CTF不比实战,最好不要死磕.死磕就输了.我就是死磕在缓存文件死的.真的惭愧: 2.对于flag的位置不要太局限于web目录下,如果是命令执行直接上find / -name flag*: ...

  6. 实验吧CTF题库-隐写术(部分)

    Spamcarver 用kali下载图片 root@sch01ar:~# wget http://ctf5.shiyanbar.com/stega/spamcarver/spamcarver.jpg ...

  7. ctf题目writeup(8)

    2019.2.11 南京邮电的ctf平台: 地址http://ctf.nuptzj.cn/challenges# 他们好像搭新的平台了...我注册弄了好半天... 1. 签到题,打开网址: 查看一下页 ...

  8. CTF密码学总结

    CTF中那些脑洞大开的编码和加密 摘自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...

  9. CTF中编码与加解密总结

    CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...

  10. SWPU CTF题解

    本博客为西南石油大学(南充校区)CTF团队赛的题解 所有题目网址:http://47.106.87.69:9000/game 今天我是流泪狗狗头 解压后发现压缩包中是一个带有密码的图片,winhex分 ...

随机推荐

  1. python 判断对象是否相等以及eq函数

    当对两个点的实例进行值的比较时,比如p1=Point(1,1) p2=Point(1,2),判断p1==p2时__eq__()会被调用,用以判断两个实例是否相等.在上述代码中定义了只要x和y的坐标相同 ...

  2. pyqt安装

    一.安装PyQt5 pip install PyQt5 二.安装PyQt-tools pip install PyQt-tools *注:mac不需要安装PyQt-tools,能够正常使用,只支持Wi ...

  3. 在pycharm进行单元测试(unittest python)

    在Edit Configuration中添加Python test 选中相应的脚本或者文件夹 # coding:utf-8 import unittest import requests from c ...

  4. 微信小程序使用同声传译实现语音识别功能

    我使用同声传译语音识别功能是为了实现微信小程序首页的语音搜索功能,如果你也是那么恭喜你,你可以ctrl+c.ctrl+v再改一改,如果你不是那么你也不要着急的走可以看完我的文章会对你有所帮助! 首先是 ...

  5. curl测试代理连接某个域名的连接时间

    缘由:需要查询一下某些代理访问指定域名所消耗的时间,来判断是否是代理连接受限 以下代理均为示例代理,无法真正连接 1. 通过curl方式来测试指定代理的连接情况,代理无账号密码 curl -x 127 ...

  6. 【Python】神器:Streamlit,仅使用Python开发一个运维管理后台(不需要编写html,js,css)

    背景 作为SRE,我们有很多很多自动化的工具,大部分都是自动运行的,还有一部分是CLI,我们一直苦于没有一个自己的管理后台网站,受限于前端能力薄弱,开发出来的网页只能说凑活能用,但是不好用. 现在我们 ...

  7. 能够划分局域网的VLAN

    VLAN与三层交换机 1. VLAN的概述与优势 1.1 分割广播域 1.2 VLAN的优势 2. VLAN的种类 2.1 静态VLAN 2.2 动态VLAN 3. VLAN的ID 4.三层交换机转发 ...

  8. GO文件读写01---读文件

    打开文件 package main import ( "fmt" "os" ) /* buffer 缓冲区 utility 便利的工具 util 便捷工具(傻瓜 ...

  9. Jmeter- 笔记4 - 参数化 、函数

    参数化 调用变量的用法: ${变量名} 参数化第一 二种. 定义变量的两种方法: 配置元件(Config Element) -> 用户定义的变量(User Defined Variables) ...

  10. 使用TensorRT集成推理inference

    使用TensorRT集成推理inference 使用TensorRT集成进行推理测试. 使用ResNet50模型对每个GPU进行推理,并对其它模型进行性能比较,最后与其它服务器进行比较测试. ResN ...