CG-CTF 签到
int __cdecl sub_401340(unsigned __int8 *a1)
{
int v2; // [esp+18h] [ebp-D0h]
int v3; // [esp+1Ch] [ebp-CCh]
int v4; // [esp+20h] [ebp-C8h]
int v5; // [esp+24h] [ebp-C4h]
int v6; // [esp+28h] [ebp-C0h]
int v7; // [esp+2Ch] [ebp-BCh]
int v8; // [esp+30h] [ebp-B8h]
int v9; // [esp+34h] [ebp-B4h]
int v10; // [esp+38h] [ebp-B0h]
int v11; // [esp+3Ch] [ebp-ACh]
int v12; // [esp+40h] [ebp-A8h]
int v13; // [esp+44h] [ebp-A4h]
int v14; // [esp+48h] [ebp-A0h]
int v15; // [esp+4Ch] [ebp-9Ch]
int v16; // [esp+50h] [ebp-98h]
int v17; // [esp+54h] [ebp-94h]
int v18; // [esp+58h] [ebp-90h]
int v19; // [esp+5Ch] [ebp-8Ch]
int v20; // [esp+60h] [ebp-88h]
int v21; // [esp+64h] [ebp-84h]
int v22; // [esp+68h] [ebp-80h]
int v23; // [esp+6Ch] [ebp-7Ch]
int v24; // [esp+70h] [ebp-78h]
int v25; // [esp+74h] [ebp-74h]
int v26; // [esp+78h] [ebp-70h]
int v27; // [esp+7Ch] [ebp-6Ch]
int v28; // [esp+80h] [ebp-68h]
int v29; // [esp+84h] [ebp-64h]
int v30; // [esp+88h] [ebp-60h]
int v31; // [esp+8Ch] [ebp-5Ch]
int v32; // [esp+90h] [ebp-58h]
int v33; // [esp+94h] [ebp-54h]
int v34; // [esp+98h] [ebp-50h]
int v35; // [esp+9Ch] [ebp-4Ch]
int v36; // [esp+A0h] [ebp-48h]
int v37; // [esp+A4h] [ebp-44h]
int v38; // [esp+A8h] [ebp-40h]
int v39; // [esp+ACh] [ebp-3Ch]
int v40; // [esp+B0h] [ebp-38h]
int v41; // [esp+B4h] [ebp-34h]
int v42; // [esp+B8h] [ebp-30h]
int v43; // [esp+BCh] [ebp-2Ch]
int v44; // [esp+C0h] [ebp-28h]
int v45; // [esp+C4h] [ebp-24h]
int v46; // [esp+C8h] [ebp-20h]
int v47; // [esp+CCh] [ebp-1Ch]
int v48; // [esp+D0h] [ebp-18h]
int v49; // [esp+D4h] [ebp-14h]
int v50; // [esp+D8h] [ebp-10h]
int i; // [esp+DCh] [ebp-Ch]
v2 = 34 * a1[3] + 12 * *a1 + 53 * a1[1] + 6 * a1[2] + 58 * a1[4] + 36 * a1[5] + a1[6];
v3 = 27 * a1[4] + 73 * a1[3] + 12 * a1[2] + 83 * *a1 + 85 * a1[1] + 96 * a1[5] + 52 * a1[6];
v4 = 24 * a1[2] + 78 * *a1 + 53 * a1[1] + 36 * a1[3] + 86 * a1[4] + 25 * a1[5] + 46 * a1[6];
v5 = 78 * a1[1] + 39 * *a1 + 52 * a1[2] + 9 * a1[3] + 62 * a1[4] + 37 * a1[5] + 84 * a1[6];
v6 = 48 * a1[4] + 6 * a1[1] + 23 * *a1 + 14 * a1[2] + 74 * a1[3] + 12 * a1[5] + 83 * a1[6];
v7 = 15 * a1[5] + 48 * a1[4] + 92 * a1[2] + 85 * a1[1] + 27 * *a1 + 42 * a1[3] + 72 * a1[6];
v8 = 26 * a1[5] + 67 * a1[3] + 6 * a1[1] + 4 * *a1 + 3 * a1[2] + 68 * a1[6];
v9 = 34 * a1[10] + 12 * a1[7] + 53 * a1[8] + 6 * a1[9] + 58 * a1[11] + 36 * a1[12] + a1[13];
v10 = 27 * a1[11] + 73 * a1[10] + 12 * a1[9] + 83 * a1[7] + 85 * a1[8] + 96 * a1[12] + 52 * a1[13];
v11 = 24 * a1[9] + 78 * a1[7] + 53 * a1[8] + 36 * a1[10] + 86 * a1[11] + 25 * a1[12] + 46 * a1[13];
v12 = 78 * a1[8] + 39 * a1[7] + 52 * a1[9] + 9 * a1[10] + 62 * a1[11] + 37 * a1[12] + 84 * a1[13];
v13 = 48 * a1[11] + 6 * a1[8] + 23 * a1[7] + 14 * a1[9] + 74 * a1[10] + 12 * a1[12] + 83 * a1[13];
v14 = 15 * a1[12] + 48 * a1[11] + 92 * a1[9] + 85 * a1[8] + 27 * a1[7] + 42 * a1[10] + 72 * a1[13];
v15 = 26 * a1[12] + 67 * a1[10] + 6 * a1[8] + 4 * a1[7] + 3 * a1[9] + 68 * a1[13];
v16 = 34 * a1[17] + 12 * a1[14] + 53 * a1[15] + 6 * a1[16] + 58 * a1[18] + 36 * a1[19] + a1[20];
v17 = 27 * a1[18] + 73 * a1[17] + 12 * a1[16] + 83 * a1[14] + 85 * a1[15] + 96 * a1[19] + 52 * a1[20];
v18 = 24 * a1[16] + 78 * a1[14] + 53 * a1[15] + 36 * a1[17] + 86 * a1[18] + 25 * a1[19] + 46 * a1[20];
v19 = 78 * a1[15] + 39 * a1[14] + 52 * a1[16] + 9 * a1[17] + 62 * a1[18] + 37 * a1[19] + 84 * a1[20];
v20 = 48 * a1[18] + 6 * a1[15] + 23 * a1[14] + 14 * a1[16] + 74 * a1[17] + 12 * a1[19] + 83 * a1[20];
v21 = 15 * a1[19] + 48 * a1[18] + 92 * a1[16] + 85 * a1[15] + 27 * a1[14] + 42 * a1[17] + 72 * a1[20];
v22 = 26 * a1[19] + 67 * a1[17] + 6 * a1[15] + 4 * a1[14] + 3 * a1[16] + 68 * a1[20];
v23 = 34 * a1[24] + 12 * a1[21] + 53 * a1[22] + 6 * a1[23] + 58 * a1[25] + 36 * a1[26] + a1[27];
v24 = 27 * a1[25] + 73 * a1[24] + 12 * a1[23] + 83 * a1[21] + 85 * a1[22] + 96 * a1[26] + 52 * a1[27];
v25 = 24 * a1[23] + 78 * a1[21] + 53 * a1[22] + 36 * a1[24] + 86 * a1[25] + 25 * a1[26] + 46 * a1[27];
v26 = 78 * a1[22] + 39 * a1[21] + 52 * a1[23] + 9 * a1[24] + 62 * a1[25] + 37 * a1[26] + 84 * a1[27];
v27 = 48 * a1[25] + 6 * a1[22] + 23 * a1[21] + 14 * a1[23] + 74 * a1[24] + 12 * a1[26] + 83 * a1[27];
v28 = 15 * a1[26] + 48 * a1[25] + 92 * a1[23] + 85 * a1[22] + 27 * a1[21] + 42 * a1[24] + 72 * a1[27];
v29 = 26 * a1[26] + 67 * a1[24] + 6 * a1[22] + 4 * a1[21] + 3 * a1[23] + 68 * a1[27];
v30 = 34 * a1[31] + 12 * a1[28] + 53 * a1[29] + 6 * a1[30] + 58 * a1[32] + 36 * a1[33] + a1[34];
v31 = 27 * a1[32] + 73 * a1[31] + 12 * a1[30] + 83 * a1[28] + 85 * a1[29] + 96 * a1[33] + 52 * a1[34];
v32 = 24 * a1[30] + 78 * a1[28] + 53 * a1[29] + 36 * a1[31] + 86 * a1[32] + 25 * a1[33] + 46 * a1[34];
v33 = 78 * a1[29] + 39 * a1[28] + 52 * a1[30] + 9 * a1[31] + 62 * a1[32] + 37 * a1[33] + 84 * a1[34];
v34 = 48 * a1[32] + 6 * a1[29] + 23 * a1[28] + 14 * a1[30] + 74 * a1[31] + 12 * a1[33] + 83 * a1[34];
v35 = 15 * a1[33] + 48 * a1[32] + 92 * a1[30] + 85 * a1[29] + 27 * a1[28] + 42 * a1[31] + 72 * a1[34];
v36 = 26 * a1[33] + 67 * a1[31] + 6 * a1[29] + 4 * a1[28] + 3 * a1[30] + 68 * a1[34];
v37 = 34 * a1[38] + 12 * a1[35] + 53 * a1[36] + 6 * a1[37] + 58 * a1[39] + 36 * a1[40] + a1[41];
v38 = 27 * a1[39] + 73 * a1[38] + 12 * a1[37] + 83 * a1[35] + 85 * a1[36] + 96 * a1[40] + 52 * a1[41];
v39 = 24 * a1[37] + 78 * a1[35] + 53 * a1[36] + 36 * a1[38] + 86 * a1[39] + 25 * a1[40] + 46 * a1[41];
v40 = 78 * a1[36] + 39 * a1[35] + 52 * a1[37] + 9 * a1[38] + 62 * a1[39] + 37 * a1[40] + 84 * a1[41];
v41 = 48 * a1[39] + 6 * a1[36] + 23 * a1[35] + 14 * a1[37] + 74 * a1[38] + 12 * a1[40] + 83 * a1[41];
v42 = 15 * a1[40] + 48 * a1[39] + 92 * a1[37] + 85 * a1[36] + 27 * a1[35] + 42 * a1[38] + 72 * a1[41];
v43 = 26 * a1[40] + 67 * a1[38] + 6 * a1[36] + 4 * a1[35] + 3 * a1[37] + 68 * a1[41];
v44 = 34 * a1[45] + 12 * a1[42] + 53 * a1[43] + 6 * a1[44] + 58 * a1[46] + 36 * a1[47] + a1[48];
v45 = 27 * a1[46] + 73 * a1[45] + 12 * a1[44] + 83 * a1[42] + 85 * a1[43] + 96 * a1[47] + 52 * a1[48];
v46 = 24 * a1[44] + 78 * a1[42] + 53 * a1[43] + 36 * a1[45] + 86 * a1[46] + 25 * a1[47] + 46 * a1[48];
v47 = 78 * a1[43] + 39 * a1[42] + 52 * a1[44] + 9 * a1[45] + 62 * a1[46] + 37 * a1[47] + 84 * a1[48];
v48 = 48 * a1[46] + 6 * a1[43] + 23 * a1[42] + 14 * a1[44] + 74 * a1[45] + 12 * a1[47] + 83 * a1[48];
v49 = 15 * a1[47] + 48 * a1[46] + 92 * a1[44] + 85 * a1[43] + 27 * a1[42] + 42 * a1[45] + 72 * a1[48];
v50 = 26 * a1[47] + 67 * a1[45] + 6 * a1[43] + 4 * a1[42] + 3 * a1[44] + 68 * a1[48];
for ( i = 0; i <= 48; ++i )
{
if ( *(&v2 + i) != dword_404000[i] )
{
printf("GG");
exit(0);
}
}
return puts("TQL");
}
这题讲道理,算送分,考个z3的使用,这玩意求多元一次方程,很香,星盟的里面有一题和这题类似,不过比这个
恶心多了,那个32方程,而且还有位运算,主要是求几十个数组,要分离数据,对方程的处理,上次看到夜影师傅的wp里面有个这类题,直接元编程,把代码编出来,是真的狠。
1.首先shift+e 取出我们要的数据
将c格式改成py的
2.利用z3来求解,同时处理方程,我使用replace,替换的,也是偷学的2333,就不放代码了,直接上脚本。
from z3 import *
v1 =[18564,
37316,
32053,
33278,
23993,
33151,
15248,
13719,
34137,
27391,
28639,
18453,
28465,
12384,
20780,
45085,
35827,
37243,
26037,
39409,
17583,
20825,
44474,
35138,
36914,
25918,
38915,
17672,
21219,
43935,
37072,
39359,
27793,
41447,
18098,
21335,
46164,
38698,
39084,
29205,
40913,
19117,
21786,
46573,
38322,
41017,
29298,
43409,
19655
]
solver=Solver()
a1=[Int("u[%d]"%i) for i in range(49)]
solver.add(v1[0]== 34 * a1[3] + 12 * a1[0] + 53 * a1[1] + 6 * a1[2] + 58 * a1[4] + 36 * a1[5] + a1[6])
solver.add(v1[1] == 27 * a1[4] + 73 * a1[3] + 12 * a1[2] + 83 *a1[0] + 85 * a1[1] + 96 * a1[5] + 52 * a1[6])
solver.add(v1[2] == 24 * a1[2] + 78 * a1[0] + 53 * a1[1] + 36 * a1[3] + 86 * a1[4] + 25 * a1[5] + 46 * a1[6])
solver.add(v1[3] == 78 * a1[1] + 39 * a1[0] + 52 * a1[2] + 9 * a1[3] + 62 * a1[4] + 37 * a1[5] + 84 * a1[6])
solver.add(v1[4] == 48 * a1[4] + 6 * a1[1] + 23 *a1[0] + 14 * a1[2] + 74 * a1[3] + 12 * a1[5] + 83 * a1[6])
solver.add(v1[5] == 15 * a1[5] + 48 * a1[4] + 92 * a1[2] + 85 * a1[1] + 27 * a1[0]+ 42 * a1[3] + 72 * a1[6])
solver.add(v1[6] == 26 * a1[5] + 67 * a1[3] + 6 * a1[1] + 4 * a1[0] + 3 * a1[2] + 68 * a1[6])
solver.add(v1[7] == 34 * a1[10] + 12 * a1[7] + 53 * a1[8] + 6 * a1[9] + 58 * a1[11] + 36 * a1[12] + a1[13])
solver.add(v1[8] == 27 * a1[11] + 73 * a1[10] + 12 * a1[9] + 83 * a1[7] + 85 * a1[8] + 96 * a1[12] + 52 * a1[13])
solver.add(v1[9] == 24 * a1[9] + 78 * a1[7] + 53 * a1[8] + 36 * a1[10] + 86 * a1[11] + 25 * a1[12] + 46 * a1[13])
solver.add(v1[10] == 78 * a1[8] + 39 * a1[7] + 52 * a1[9] + 9 * a1[10] + 62 * a1[11] + 37 * a1[12] + 84 * a1[13])
solver.add(v1[11] == 48 * a1[11] + 6 * a1[8] + 23 * a1[7] + 14 * a1[9] + 74 * a1[10] + 12 * a1[12] + 83 * a1[13])
solver.add(v1[12] == 15 * a1[12] + 48 * a1[11] + 92 * a1[9] + 85 * a1[8] + 27 * a1[7] + 42 * a1[10] + 72 * a1[13])
solver.add(v1[13] == 26 * a1[12] + 67 * a1[10] + 6 * a1[8] + 4 * a1[7] + 3 * a1[9] + 68 * a1[13])
solver.add(v1[14] == 34 * a1[17] + 12 * a1[14] + 53 * a1[15] + 6 * a1[16] + 58 * a1[18] + 36 * a1[19] + a1[20])
solver.add(v1[15] == 27 * a1[18] + 73 * a1[17] + 12 * a1[16] + 83 * a1[14] + 85 * a1[15] + 96 * a1[19] + 52 * a1[20])
solver.add(v1[16] == 24 * a1[16] + 78 * a1[14] + 53 * a1[15] + 36 * a1[17] + 86 * a1[18] + 25 * a1[19] + 46 * a1[20])
solver.add(v1[17] == 78 * a1[15] + 39 * a1[14] + 52 * a1[16] + 9 * a1[17] + 62 * a1[18] + 37 * a1[19] + 84 * a1[20])
solver.add(v1[18] == 48 * a1[18] + 6 * a1[15] + 23 * a1[14] + 14 * a1[16] + 74 * a1[17] + 12 * a1[19] + 83 * a1[20])
solver.add(v1[19] == 15 * a1[19] + 48 * a1[18] + 92 * a1[16] + 85 * a1[15] + 27 * a1[14] + 42 * a1[17] + 72 * a1[20])
solver.add(v1[20] == 26 * a1[19] + 67 * a1[17] + 6 * a1[15] + 4 * a1[14] + 3 * a1[16] + 68 * a1[20])
solver.add(v1[21] == 34 * a1[24] + 12 * a1[21] + 53 * a1[22] + 6 * a1[23] + 58 * a1[25] + 36 * a1[26] + a1[27])
solver.add(v1[22] == 27 * a1[25] + 73 * a1[24] + 12 * a1[23] + 83 * a1[21] + 85 * a1[22] + 96 * a1[26] + 52 * a1[27])
solver.add( v1[23] == 24 * a1[23] + 78 * a1[21] + 53 * a1[22] + 36 * a1[24] + 86 * a1[25] + 25 * a1[26] + 46 * a1[27])
solver.add(v1[24] == 78 * a1[22] + 39 * a1[21] + 52 * a1[23] + 9 * a1[24] + 62 * a1[25] + 37 * a1[26] + 84 * a1[27])
solver.add(v1[25] == 48 * a1[25] + 6 * a1[22] + 23 * a1[21] + 14 * a1[23] + 74 * a1[24] + 12 * a1[26] + 83 * a1[27])
solver.add(v1[26] == 15 * a1[26] + 48 * a1[25] + 92 * a1[23] + 85 * a1[22] + 27 * a1[21] + 42 * a1[24] + 72 * a1[27])
solver.add(v1[27] == 26 * a1[26] + 67 * a1[24] + 6 * a1[22] + 4 * a1[21] + 3 * a1[23] + 68 * a1[27])
solver.add(v1[28] == 34 * a1[31] + 12 * a1[28] + 53 * a1[29] + 6 * a1[30] + 58 * a1[32] + 36 * a1[33] + a1[34])
solver.add(v1[29] == 27 * a1[32] + 73 * a1[31] + 12 * a1[30] + 83 * a1[28] + 85 * a1[29] + 96 * a1[33] + 52 * a1[34])
solver.add(v1[30] == 24 * a1[30] + 78 * a1[28] + 53 * a1[29] + 36 * a1[31] + 86 * a1[32] + 25 * a1[33] + 46 * a1[34])
solver.add(v1[31] == 78 * a1[29] + 39 * a1[28] + 52 * a1[30] + 9 * a1[31] + 62 * a1[32] + 37 * a1[33] + 84 * a1[34])
solver.add(v1[32] == 48 * a1[32] + 6 * a1[29] + 23 * a1[28] + 14 * a1[30] + 74 * a1[31] + 12 * a1[33] + 83 * a1[34])
solver.add(v1[33] == 15 * a1[33] + 48 * a1[32] + 92 * a1[30] + 85 * a1[29] + 27 * a1[28] + 42 * a1[31] + 72 * a1[34])
solver.add(v1[34] == 26 * a1[33] + 67 * a1[31] + 6 * a1[29] + 4 * a1[28] + 3 * a1[30] + 68 * a1[34])
solver.add(v1[35] == 34 * a1[38] + 12 * a1[35] + 53 * a1[36] + 6 * a1[37] + 58 * a1[39] + 36 * a1[40] + a1[41])
solver.add(v1[36] == 27 * a1[39] + 73 * a1[38] + 12 * a1[37] + 83 * a1[35] + 85 * a1[36] + 96 * a1[40] + 52 * a1[41])
solver.add(v1[37] == 24 * a1[37] + 78 * a1[35] + 53 * a1[36] + 36 * a1[38] + 86 * a1[39] + 25 * a1[40] + 46 * a1[41])
solver.add(v1[38] == 78 * a1[36] + 39 * a1[35] + 52 * a1[37] + 9 * a1[38] + 62 * a1[39] + 37 * a1[40] + 84 * a1[41])
solver.add(v1[39] == 48 * a1[39] + 6 * a1[36] + 23 * a1[35] + 14 * a1[37] + 74 * a1[38] + 12 * a1[40] + 83 * a1[41])
solver.add(v1[40] == 15 * a1[40] + 48 * a1[39] + 92 * a1[37] + 85 * a1[36] + 27 * a1[35] + 42 * a1[38] + 72 * a1[41])
solver.add(v1[41] == 26 * a1[40] + 67 * a1[38] + 6 * a1[36] + 4 * a1[35] + 3 * a1[37] + 68 * a1[41])
solver.add(v1[42] == 34 * a1[45] + 12 * a1[42] + 53 * a1[43] + 6 * a1[44] + 58 * a1[46] + 36 * a1[47] + a1[48])
solver.add(v1[43] == 27 * a1[46] + 73 * a1[45] + 12 * a1[44] + 83 * a1[42] + 85 * a1[43] + 96 * a1[47] + 52 * a1[48])
solver.add(v1[44] == 24 * a1[44] + 78 * a1[42] + 53 * a1[43] + 36 * a1[45] + 86 * a1[46] + 25 * a1[47] + 46 * a1[48])
solver.add(v1[45] == 78 * a1[43] + 39 * a1[42] + 52 * a1[44] + 9 * a1[45] + 62 * a1[46] + 37 * a1[47] + 84 * a1[48])
solver.add(v1[46] == 48 * a1[46] + 6 * a1[43] + 23 * a1[42] + 14 * a1[44] + 74 * a1[45] + 12 * a1[47] + 83 * a1[48])
solver.add(v1[47] == 15 * a1[47] + 48 * a1[46] + 92 * a1[44] + 85 * a1[43] + 27 * a1[42] + 42 * a1[45] + 72 * a1[48])
solver.add(v1[48] == 26 * a1[47] + 67 * a1[45] + 6 * a1[43] + 4 * a1[42] + 3 * a1[44] + 68 * a1[48])
print(solver.check())
print(str(solver.model()).replace(",",""))
u=[i for i in range(49)]
u[42] = 101
u[45] = 105
u[22] = 108
u[47] = 103
u[30] = 115
u[18] = 97
u[26] = 114
u[14] = 108
u[35] = 121
u[16] = 110
u[21] = 97
u[37] = 105
u[40] = 101
u[43] = 115
u[23] = 103
u[24] = 101
u[4] = 123
u[32] = 118
u[33] = 101
u[17] = 101
u[25] = 98
u[44] = 116
u[36] = 95
u[0] = 78
u[11] = 49
u[12] = 57
u[28] = 95
u[31] = 95
u[46] = 110
u[7] = 116
u[2] = 84
u[8] = 102
u[19] = 114
u[39] = 116
u[1] = 67
u[9] = 50
u[15] = 105
u[3] = 70
u[10] = 48
u[5] = 110
u[29] = 105
u[38] = 110
u[48] = 125
u[41] = 114
u[34] = 114
u[27] = 97
u[20] = 95
u[13] = 95
u[6] = 99
f=""
for j in range(49):
f+=chr(u[j])
print(f)
CG-CTF 签到的更多相关文章
- web做题记录
2020.1.19 南邮ctf 签到题 题目:key在哪里? 在火狐浏览器中右键选择打开查看源代码,在源代码可以看到如下 因为是第一次做这个题,不知道提交啥,我先提交了“admiaanaaaaaaaa ...
- 记一次CTF的签到题
开篇 打开题目网站 首先看到的是一个人博客,功能点非常少,功能较多的页面就是留言板了 一开始没啥思路,就想着抓包能不能找到SQL注入无果,在这个地方卡了很久 柳暗花明 在乱点的时候,无意中发现题目中的 ...
- CTF中那些脑洞大开的编码和加密
0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到类似这样的问题:表哥,你知道这是什么加密吗?其实CTF中脑洞密码题(非现代加密方式)一般都是各种古典密码的变形,一般出题者会对密文进 ...
- 社团的CTF逆向题WriteUp
最近社团弄了CTF比赛,然后我就帮忙写了逆向的题目,这里写一下WriteUp,题目和源码在附件中给出 一个简单的逆向:one_jmp_to_flag.exe 这题算是签到题,直接OD智能搜索就完事了, ...
- 巅峰极客CTF writeup[上]
经验教训 1.CTF不比实战,最好不要死磕.死磕就输了.我就是死磕在缓存文件死的.真的惭愧: 2.对于flag的位置不要太局限于web目录下,如果是命令执行直接上find / -name flag*: ...
- 实验吧CTF题库-隐写术(部分)
Spamcarver 用kali下载图片 root@sch01ar:~# wget http://ctf5.shiyanbar.com/stega/spamcarver/spamcarver.jpg ...
- ctf题目writeup(8)
2019.2.11 南京邮电的ctf平台: 地址http://ctf.nuptzj.cn/challenges# 他们好像搭新的平台了...我注册弄了好半天... 1. 签到题,打开网址: 查看一下页 ...
- CTF密码学总结
CTF中那些脑洞大开的编码和加密 摘自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...
- CTF中编码与加解密总结
CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...
- SWPU CTF题解
本博客为西南石油大学(南充校区)CTF团队赛的题解 所有题目网址:http://47.106.87.69:9000/game 今天我是流泪狗狗头 解压后发现压缩包中是一个带有密码的图片,winhex分 ...
随机推荐
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- CVPR2020论文介绍: 3D 目标检测高效算法
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Clo ...
- NVIDIA 认证系统
NVIDIA 认证系统 AI 是这个时代最强大的技术,需要新一代经过调整和测试的计算机来推动其发展. 自 1 月 27 日开始,可从 NVIDIA 合作伙伴处获取用于数据中心的新型加速服务器,推动 A ...
- AMD–7nm “Rome”芯片SOC体系结构,支持64核
AMD–7nm "Rome"芯片SOC体系结构,支持64核 AMD Fully Discloses Zeppelin SOC Architecture Details at ISS ...
- 功率半导体碳化硅(SiC)技术
功率半导体碳化硅(SiC)技术 Silicon Carbide Adoption Enters Next Phase 碳化硅(SiC)技术的需求继续增长,这种技术可以最大限度地提高当今电力系统的效率, ...
- 『动善时』JMeter基础 — 40、JMeter中ForEach控制器详解
目录 1.什么是逻辑控制器 2.ForEach控制器介绍 3.ForEach控制器的使用 (1)测试计划内包含的元件 (2)获取学院列表请求内容 (3)JSON提取器内容 (4)ForEach控制器内 ...
- 【模拟8.01】matrix(DP杂题,思维题)
很神的题,感谢lnc大佬的指点. 先设1-LL[i]统称左区间,RR[i]-m为右区间 用L[i]统计从1-i列,出现的左区间端点的前缀和,R[i]是右区间.... f[i][j]中j表示当前在第i列 ...
- C#关于数据库中存储的用户权限类似 "普通员工,管理员" 如何在代码中读取分析权限
之前在看某些数据库的用户权限的表时,发现字段是这样类似这样存储的" 普通员工,管理员 ",当时觉得他们是通过分割字符串来分析权限的.后来读到 Liam Wang 的 https ...
- java变量及常量
变量 本质:就是代表一个"可操作的存储空间",空间位置是确定的,但是里面放置什么值不确定.我们可通过变量名来访问"对应的存储空间",从而操纵这个"存储 ...
- Python-对比两个目录中Excel文件
背景:我在5月20日收到了一批Excel文件数据,由于文件很多大约有将近5000个,已经通过编写python脚本处理完成.但是6月9日的时候,又收到了一批新的Excel数据.但是在处理过程中发现,本次 ...