AT2390 Games on DAG
AT2390 Games on DAG
题意
\(1,2\) 号点各一个石头,每次沿边移动一个石头,不能动者输。求所有连边子集中先手胜的情况。
思路
发现对于两个石头的 SG 函数是独立的,输者两个石头 SG 函数异或值为 0,那么先手胜的情况就是所有情况减去这种情况。
对于所有 SG 函数为 \(v\) 的点,它们必须向 SG 函数小于 \(v\) 的所有点连至少一条边,对大于 \(v\) 的连边没有约束,并且互相不能连边。
所以我们可以枚举当前图的 SG 函数为 0 的点,这样所有其他点都至少向它们连一条边,而它们之间不连边,它们向其他点连边任意。于是对于剩下点的连通子图,我们又可以将所有点的 SG 函数减 1,使它又可以枚举 SG 函数为 0 的点。
于是我们可以 DP。设 \(f_S(1,2\in S)\) 为对于 \(S\) 所有连通子图满足 1,2 SG 函数相等的方案数。
转移时枚举 \(S\) 的子集 \(T\),使 \(1,2\in T\) 或 \(1,2\not \in T\)。对于前者情况,\(T\) 对于 \(S\) 的补集为 SG 函数为 0 的点,从 \(f_T\) 转移即可。对于后者情况,1,2 SG 函数为 0,\(T\) 中的边随便连。
DP 前预处理出所有集合对每个点的连边条数。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=15,mod=1e9+7;
int n,m,a[maxn][maxn],f[1<<maxn],c[1<<maxn][maxn],pow[maxn*maxn];
inline void work(){
n=read(),m=read();
pow[0]=1;for(int i=1;i<=m;i++) pow[i]=(pow[i-1]<<1)%mod;
for(int x,y,i=1;i<=m;i++) x=read()-1,y=read()-1,a[x][y]=1;
for(int d=1;d<1<<n;d++){
int j=0;
while(~d>>j&1)++j;
for(int x=0;x<n;x++) c[d][x]=c[d^1<<j][x]+a[x][j];
}
for(int d=0;d<1<<n;d++) if((d&3)==3){
f[d]=1;
for(int t=d&(d-1);t;--t&=d) if((t&1)==(t>>1&1)) if(t&1){
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+1ll*res*f[t])%mod;
}else{
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod*pow[c[t][i]]%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+res)%mod;
}
}
printf("%d\n",(pow[m]-f[(1<<n)-1]+mod)%mod);
}
}
signed main(){
star::work();
return 0;
}
AT2390 Games on DAG的更多相关文章
- 题解 AT2390 【Games on DAG】
题目大意 给出一个n个点m条边的DAG,记为G. 可以删掉若干条边成为G′,显然有 2m 种不同的G′. 连边保证:若有 (xi →yi) 边,则 xi < yi . 初始点1和点2有一个标 ...
- AT2390-[AGC016F]Games on DAG【状压dp,SG函数】
正题 题目链接:https://www.luogu.com.cn/problem/AT2390 解题思路 \(n\)个点的\(DAG\),\(m\)条边可有可无,\(1\)和\(2\)上有石头.求有多 ...
- AGC 016 F - Games on DAG(状压dp)
题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...
- AtCoder Grand Contest 016 F - Games on DAG
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...
- Atcoder Grand Contest 016 F - Games on DAG(状压 dp)
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...
- Solution -「AGC 016F」Games on DAG
\(\mathcal{Description}\) Link. 给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...
- DP及其优化
常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 ...
- 【AtCoder】AGC016
A - Shrinking 用每个字母模拟一下就行 #include <bits/stdc++.h> #define fi first #define se second #define ...
- AGC016题解
呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...
随机推荐
- httprunner 2.5.7 下.env 文件环境变量的使用及debugtalk的使用,对test的参数化及执行
一.httprunner 2.5.7 下.env 文件的使用 1..env 文件配置如下: 2.debugtalk.py 编写如下: 在debugtalk.py中增加开始和结束执行语句: 3.需要做 ...
- STS或eclipse中导入新项目出现红色感叹号红色叉叉的问题
maven项目 原因: jar包缺失 没有正确配置Maven仓库 解决: Window->Preferences->Maven->Installations->Add 添加你的 ...
- mapboxgl 互联网地图纠偏插件(一)
之前写过一个 leaflet 互联网地图纠偏插件,引用插件后一行代码都不用写,就能解决国内互联网地图瓦片的偏移问题. 最近想对 mapboxgl 也写一个这样的插件. 原因是自己发布的OSM矢量瓦片地 ...
- Zookeeper 面试题(持续更新、吐血推荐)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- STL----vector注意事项
开vector时要注意内存容易炸 最好的办法就是在开vector之后,对他进行一步操作 vector<int> a; a.resize(n); n就是你要开的数组的大小,此时数组里已经插入 ...
- ES6 学习笔记之对象的拓展
1.属性的简洁表示法 ES6 允许直接写入变量和函数,作为对象的属性和方法.这样书写更加简洁. const foo = 'bar'; const baz = {foo}; baz //{foo: &q ...
- gRPC(2):四种基本通信模式
在 gRPC(1):入门及简单使用(go) 中,我们实现了一个简单的 gRPC 应用程序,其中双方通信是简单的请求-响应模式,没发出一个请求都会得到一个响应,然而,借助 gRPC 可以实现不同的通信模 ...
- 学Java,找对圈子,跟对人
我大学学的是机械专业,到大四才决定要学Java,以后当一名程序员. 到现在,十几年过去了,我现在已经是一家上市公司的技术总监了,管理的技术团队有100多人.很庆幸当初了选择了学Java. 还记得当初学 ...
- C语言:C99 中的37个关键字
一.数据类型关键字(12个): 1.char [tʃɑ:]:声明字符型变量或函数 2.double [ˈdʌbəl] :声明双精度变量或函数 3.enum :声明枚举类型 4.float [fləut ...
- solidity 小案例 收费站
solidity IDE下载地址 https://pan.baidu.com/s/1cY8VgDqB9Wt9VzK-Nocbyw 代码案例: pragma solidity ^0.4.0; //创建合 ...