正题

题目链接:https://www.luogu.com.cn/problem/P3214


题目大意

一个由\(1\sim n\)的所有整数构成的集合\(S\),求出它的\(m\)个不同非空子集满足每个元素都出现了偶数次。


解题思路

集合的话不用考虑顺序,可以输出有序的答案除以\(m!\)就好了。

选\(i\)个的话,考虑偶数次的条件,无论前面\(i-1\)个集合如何选取,最后一个都能根据情况调整过来,所以不考虑重复的话方案就是\(P_{2^n}^{i-1}\)

设\(f_i\)表示选出\(i\)个集合的答案,因为上面那种方案可能会导致最后一个集合出现重复等问题,我们要减去不合法的。

首先有可能是空集,那么表示前面\(i-1\)个集合都是合法的,所以方案是\(f_{i-1}\)。然后是重复,考虑和它重复的集合\(j\),那么剩下\(i-2\)个就是合法的,然后这两个重复的集合有\(2^n-(i-2)-1\)种取值(减去空集和前面出现过的),方案就是\(f_{i-2}\times (i-1)\times(2^n-i+1)\)

所以方程就是

\[f_i=P_{2^n}^{i-1}-f_{n-1}-f_{n-2}\times(i-1)\times(2^n-i+1)
\]

\(O(n)\)转移即可。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e8+7;
ll n,m,A[N],f[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&m,&n);ll p=1;
for(ll i=1;i<=m;i++)p=p*2ll%P;
ll fac=1;A[0]=1;
for(ll i=1;i<=n;i++)
A[i]=A[i-1]*(p-i)%P,fac=fac*i%P;
f[0]=1;
for(ll i=2;i<=n;i++)
f[i]=(A[i-1]-f[i-1]-f[i-2]*(i-1)%P*(p-i+1)%P)%P;
f[n]=f[n]*power(fac,P-2)%P;
printf("%lld\n",(f[n]+P)%P);
return 0;
}

P3214-[HNOI2011]卡农【dp】的更多相关文章

  1. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  2. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  3. 洛谷 P3214 - [HNOI2011]卡农(线性 dp)

    洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...

  4. 【bzoj2339】[HNOI2011]卡农 dp+容斥原理

    题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...

  5. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  6. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  7. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  8. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

  9. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  10. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

随机推荐

  1. 从350ms到80ms,揭秘阿里工程师 iOS 短视频优化方案

    内容作为 App 产品新的促活点,受到了越来越多的重视与投入,短视频则是增加用户粘性.增加用户停留时长的一把利器.短视频的内容与体验直接关系到用户是否愿意长时停留,盒马也提出全链路内容视频化的规划,以 ...

  2. WindowsService开发简单入门

    参考网址: https://www.cnblogs.com/wenlong512/p/7355971.html 一.简介 程序创建在 Windows 会话中,可长时间运行的可执行应用程序.这些服务可以 ...

  3. C#中调用c++的dll具体创建与调用步骤,亲测有效~ (待验证)

    使用的工具是VS2010哦~其他工具暂时还没试过 我新建的工程名是my21dll,所以会生成2个同名文件.接下来需要改动的只有画横线的部分 下面是my21dll.h里面的... 下面的1是自动生成的不 ...

  4. 关于RandomAccess

    package special; import java.io.IOException; import java.io.RandomAccessFile; /** * 随机访问流: * * 此类不属于 ...

  5. Go测试--性能测试分析

    目录 前言 认识数据 benchstat 分析一组样本 分析两组样本 小结 前言 benchmark测试是实际项目中经常使用的性能测试方法,我们可以针对某个函数或者某个功能点增加benchmark测试 ...

  6. Ubuntu 16.04LTS下eclipse连接mysql

    第一部分:打开eclipse,新建一个web工程,新建一个类db_test.java(jdbc连接mysql的原理自行百度) import java.sql.*; public class db_te ...

  7. 轻松搞定webpack5.x

    源码地址:https://gitee.com/cyp926/webpack-project.git "webpack": "^5.46.0", "we ...

  8. 高并发HHTP实践

    当今,正处于互联网高速发展的时代,每个人的生活都离不开互联网,互联网已经影响了每个人生活的方方面面.我们使用淘宝.京东进行购物,使用微信进行沟通,使用美图秀秀进行拍照美化等等.而这些每一步的操作下面, ...

  9. win+R 中的命令

    cmd------CMD命令提示符 MSConfig------系统配置实用程序 regedit------注册表编辑器 notepad------打开记事本 calc------启动计算器 msts ...

  10. K8S的部署方式

    K8S部署主要有两种方式: