正题

题目链接:https://www.luogu.com.cn/problem/CF891E


题目大意

\(n\)个数字的一个序列\(a_i\),每次随机选择一个让它减去一。然后贡献加上所有其他\(a_i\)的乘积。

执行\(k\)次,求贡献答案。

\(1\leq n\leq 5000,0\leq a_i,k\leq 10^9\)


解题思路

这个操作很麻烦,但是其实答案就是开始时所有\(a_i\)的乘积减去结束时所有\(a_i\)的乘积。

设第\(i\)个数减去了\(b_i\)次,就是求\(\prod_{i=1}^na_i-\prod_{i=1}^n(a_i-b_i)\)的期望,考虑怎么求后面那个东西。

推一下式子不难发现对于一组\(b_i\)对期望的贡献就是

\[\frac{1}{n^k}\frac{k!}{\prod_{i=1}^n(b_i!)}\prod_{i=1}^n(a_i-b_i)
\]

(总方案×可重排方案×贡献)

把\(\prod_{i=1}^n(b_i!)\)丢进去会有很神奇的结果

\[\Rightarrow \frac{k!}{n^k}\prod_{i=1}^n\frac{a_i-b_i}{b_i!}
\]

因为每种方案都要求和,后面那个东西显然可以生成函数搞,设

\[\widehat{f_z}(x)=\sum_{i=0}^n(a_z-i)\frac{x^i}{i!}=\sum_{i=0}^\infty a_z\frac{x^i}{i!}-\sum_{i=0}^\infty i\frac{x^i}{i!}
\]

好像就搞不动了,前面那个是\(a_ze^{x}\),其实后面那个把\(i\)抵消掉阶乘就是\(xe^{x}\)

\[\widehat{f_z(x)}=(a_z-x)e^x
\]

然后\(\widehat{F}=\prod_{i=1}^n\widehat{f_z}\),可以暴力\(O(n^2)\)乘出\(\prod_{i=1}^n(a_z-x)\)这部分,记为\(\sum_{i=0}^{\infty}c_ix^i\)。

然后展开后面的\(e^x\)就有

\[\widehat{F(x)}[x^k]=\sum_{i=0}^kc_{i}\frac{n^{k-i}}{(k-i)!}
\]

然后

\[ans=\sum_{i=0}^kc_{i}\frac{k!}{(k-i)!n^i}
\]

就好了,时间复杂度\(O(n^2)\)


code

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<algorithm>
  4. #define ll long long
  5. using namespace std;
  6. const ll N=5100,P=1e9+7;
  7. ll n,k,f[N],ans;
  8. ll power(ll x,ll b){
  9. ll ans=1;
  10. while(b){
  11. if(b&1)ans=ans*x%P;
  12. x=x*x%P;b>>=1;
  13. }
  14. return ans;
  15. }
  16. signed main()
  17. {
  18. scanf("%lld%lld",&n,&k);f[0]=1;
  19. for(ll i=1;i<=n;i++){
  20. ll x;scanf("%lld",&x);
  21. for(ll j=i;j>=1;j--)
  22. f[j]=(f[j]*x-f[j-1]+P)%P;
  23. f[0]=f[0]*x%P;
  24. }
  25. ll tt=1,inv=power(n,P-2);
  26. for(ll i=0;i<=n;i++){
  27. ans=(ans+f[i]*tt%P)%P;
  28. tt=tt*inv%P*(k-i)%P;
  29. }
  30. printf("%lld\n",(f[0]-ans+P)%P);
  31. return 0;
  32. }

CF891E-Lust【EGF】的更多相关文章

  1. P2012-拯救世界2【EGF】

    正题 题目链接:https://www.luogu.com.cn/problem/P2012 题目大意 \(12\)种东西排列成长度为\(n\)的序列,要求前四种出现奇数次,后四种出现偶数次,求方案. ...

  2. POJ3734-Blocks【EGF】

    正题 题目链接:http://poj.org/problem?id=3734 题目大意 用思种颜色给\(n\)个格子染色,要求前两种颜色出现偶数次,求方案. \(1\leq T\leq 100,1\l ...

  3. 【BZOJ4555】求和(多种解法混合版本)

    [BZOJ4555]求和(多种解法混合版本) 题面 BZOJ 给定\(n\),求 \[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)\times 2^j \times ...

  4. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  5. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  6. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  7. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  8. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  9. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

随机推荐

  1. 【开发工具】idea常用配置

    1. 设置鼠标滚轮修改字体大小 我们可以勾选此设置后,增加Ctrl + 鼠标滚轮 快捷键来控制代码字体大小显示. 2. 设置鼠标悬浮提示  3. 设置自动导包功能 Add unambiguous im ...

  2. SpringCloud bootstrap.yml 和application.yml 加载原理

    Spring Cloud 官方文档:https://cloud.spring.io/spring-cloud-static/spring-cloud.html 一个Spring Cloud的操作是通过 ...

  3. 带有附件及图片正文的JavaMail邮件发送

    1 package javamail; 2 3 import java.io.UnsupportedEncodingException; 4 import java.util.Properties; ...

  4. 工作多年后再来聊聊IO

    IO模型 IO是Input/Output的缩写.Linix网络编程中有五种IO模型: blocking IO(阻塞IO) nonblocking IO(非阻塞IO) IO multiplexing(多 ...

  5. RapidSVN设置diff和edit工具

      菜单栏 -> View -> Preferences -> Programs选择相应的配置页即可   需要配置的路径,默认都在 /usr/bin目录下的 editor可以用ged ...

  6. Linux系统的高级网络配置(bond、team、网桥)

    1.bond接口 Red Hat Enterprise Linux 允许管理员使用 bonding 内核模块和称为通道绑定接口的特殊网络接口将多个网络接口绑定 到一个通道.根据选择的绑定模式 , 通道 ...

  7. 2021秋 noip 模拟赛

    9.9 T3 第负二题 \(f_i\) 的数学意义:中心在第 \(i\) 行的全 \(1\) 组成的最大正方形(对角线水平/竖直),对角线长 \(2f_i-1\). 显然 \(f_i\) 具有单调性( ...

  8. Pytest系列(22)- allure的特性,@allure.link()、@allure.issue()、@allure.testcase()的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 上一篇文章介绍了两种allu ...

  9. 【第八篇】- Git 查看提交历史之Spring Cloud直播商城 b2b2c电子商务技术总结

    ​ Git 查看提交历史 Git 提交历史一般常用两个命令: git log 在使用 Git 提交了若干更新之后,又或者克隆了某个项目,想回顾下提交历史,我们可以使用 git log 命令查看. 针对 ...

  10. c++ 打包函数教程

    c++当要重复运行一些代码时可以打包一个函数 当没有返回值时用void打包函数: #include <iostream> #include <stdio.h> using na ...