正题

题目链接:https://www.luogu.com.cn/problem/P5369


题目大意

一个数列\(a\)的权值定义为\(max\{\sum_{i=1}^ka_i\}(k\in[1,n])\)

给出\(n\)个数字,求它们所有排列的权值和

\(1\leq n\leq 20\)


解题思路

设\(s_i,f_i,g_i\)分别表示集合\(i\)的权值和,集合\(i\)的所有排列中最大前缀和为\(s_i\)的方案数,集合\(i\)的所有排列中的最大前缀和为负的方案数。那么答案就是

\[\sum_{i=0}^{2^n-1} f_is_ig_{2^n-1-i}
\]

\(s_i\)很好求。\(g_i\)的话我们只转移\(s_i<0\)的就可以了,\(f_i\)的话我们考虑每次在前面插入一个数,那么只要原来的是最大前缀和,那么插入之后也一定是。

时间复杂度\(O(2^nn)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=21,P=998244353;
int n,a[N],lg[1<<N],s[1<<N],f[1<<N],g[1<<N],ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
for(int i=0;i<n;i++)lg[1<<i]=i;
int MS=(1<<n);f[0]=g[0]=1;
for(int i=1;i<MS;i++){
int p=i&-i;
s[i]=(s[i-p]+a[lg[p]])%P;
}
for(int i=0;i<MS;i++){
if(s[i]<0)continue;
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
(f[i|(1<<j)]+=f[i])%=P;
}
}
for(int i=0;i<MS;i++){
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
int z=i|(1<<j);
if(s[z]<0)(g[z]+=g[i])%=P;
}
}
for(int i=0;i<MS;i++)
(ans+=1ll*f[i]*g[MS-1-i]%P*s[i]%P)%=P;
printf("%d\n",(ans+P)%P);
return 0;
}

P5369-[PKUSC2018]最大前缀和【状压dp】的更多相关文章

  1. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  2. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  3. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  4. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  5. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  6. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  7. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  8. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  9. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  10. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

随机推荐

  1. 【MyBatis系列5】MyBatis4大核心对象SqlSessionFactoryBuiler,SqlSessionFactory,SqlSession,Mapper

    前言 前几篇篇我们简单讲解了MyBatis的简单用法,以及一对一和一对多以及多对多的相关动态sql查询标签的使用,也提到了嵌套查询引发了N+1问题,以及延迟加载相关功能,本篇文章将会从MyBatis底 ...

  2. linux(2)-----新装linux配置

    1.配置本机ip,刚装的Linux无内网ip vi /etc/susconfig/network-scripts/ifcfq-ens33    编辑配置文件 最后一行改为yes service net ...

  3. python 截屏操作

    方法1: 用pyscreenshot,https://pypi.org/project/pyscreenshot/ 方法2:用autopy,https://pypi.org/project/autop ...

  4. tensorflow1.12 queue 笔记

    主要参考:https://www.tensorflow.org/api_guides/python/threading_and_queues#Queue_usage_overview 自动方式 For ...

  5. rasa 如何写一个故事

    设计故事 在设计故事时,需要考虑两组对话交互:快乐路径和不快乐路径.快乐路径描述用户何时按照您的预期遵循对话流程,并在出现提示时始终提供必要的信息.然而,用户经常会因为问题.闲聊或其他问题而偏离愉快的 ...

  6. 整理之Fragment

    基础 生命周期 执行层次 进 退 创建与销毁 onAttach -> onCreate -> onCreateView -> onActivityCreate onDestroyVi ...

  7. Nginx的高级使用

    1.概述 之前介绍过Nginx的简单使用,今天来聊聊Nginx的一些高级使用. 2.使用Nginx解决跨域问题 当公司存在多个域名时,两个不同的域名相互访问就会存在跨域问题. 或者在进行前端开发时,通 ...

  8. vue element-ui 组件上传图片 以及对 图片的 宽高 和 大小 格式等 做出限制

    vue  文件: 自行引用 elemen-ui    <el-upload                         action=" 让后端给你上传地址 "      ...

  9. Onenote实现OCR识别图片

    OCR识别推荐两个软件: 1.       Tesseract:一个开源的,由谷歌维护的OCR软件. 2.       Onenote:微软Office附带或者可以自己独立安装. 3.       O ...

  10. B. 2194: 快速傅立叶之二解题报告

    $$\begin{eqnarray}&c[k] = \sum_{i}^{n}a[i]b[i-k] \\&c[k] = \sum_{i}^{n}a[n-i]b[i-k] (倒序保存a) ...