HITCON 2019 Lost Modular again writeup

算是基础题,有很多之前题的影子,做不出来纯属菜。

题目

  • 加密脚本
from Crypto.Util.number import *

class Key:
def __init__(self, bits):
assert bits >= 512
self.p = getPrime(bits)
self.q = getPrime(bits)
self.n = self.p * self.q
self.e = 0x100007
self.d = inverse(self.e, (self.p-1)*(self.q-1))
self.dmp1 = self.d%(self.p-1)
self.dmq1 = self.d%(self.q-1)
self.iqmp = inverse(self.q, self.p)
self.ipmq = inverse(self.p, self.q) def encrypt(self, data):
num = bytes_to_long(data)
result = pow(num, self.e, self.n)
return long_to_bytes(result) def decrypt(self, data):
num = bytes_to_long(data)
v1 = pow(num, self.dmp1, self.p)
v2 = pow(num, self.dmq1, self.q)
result = (v2*self.p*self.ipmq+v1*self.q*self.iqmp) % self.n
return long_to_bytes(result) def __str__(self):
return "Key([e = {0}, n = {1}, x = {2}, y = {3}])".format(self.e, self.d, self.iqmp, self.ipmq) def main():
key = Key(1024)
flag = open('flag').read()
encrypt_flag = key.encrypt(flag)
assert key.decrypt(encrypt_flag) == flag
print key
print encrypt_flag.encode('hex') if __name__ == '__main__':
main()
  • 输出
Key([e = 1048583, n = 20899585599499852848600179189763086698516108548228367107221738096450499101070075492197700491683249172909869748620431162381087017866603003080844372390109407618883775889949113518883655204495367156356586733638609604914325927159037673858380872827051492954190012228501796895529660404878822550757780926433386946425164501187561418082866346427628551763297010068329425460680225523270632454412376673863754258135691783420342075219153761633410012733450586771838248239221434791288928709490210661095249658730871114233033907339401132548352479119599592161475582267434069666373923164546185334225821332964035123667137917080001159691927, x = 22886390627173202444468626406642274959028635116543626995297684671305848436910064602418012808595951325519844918478912090039470530649857775854959462500919029371215000179065185673136642143061689849338228110909931445119687113803523924040922470616407096745128917352037282612768345609735657018628096338779732460743, y = 138356012157150927033117814862941924437637775040379746970778376921933744927520585574595823734209547857047013402623714044512594300691782086053475259157899010363944831564630625623351267412232071416191142966170634950729938561841853176635423819365023039470901382901261884795304947251115006930995163847675576699331])
32074de818f2feeb788e36d7d3ee09f0000381584a72b2fba0dcc9a2ebe5fd79cf2d6fd40c4dbfea27d3489704f2c1a30b17a783baa67229d02043c5bc9bdb995ae984d80a96bd79370ea2c356f39f85a12d16983598c1fb772f9183441fea5dfeb5b26455df75de18ce70a6a9e9dbc0a4ca434ba94cf4d1e5347395cf7aafa756c8a5bd6fd166bc30245a4bded28f5baac38d024042a166369f7515e8b0c479a1965b5988b350064648738f6585c0a0d1463bd536d11a105bb926b44236593b5c6c71ef5b132cd9c211e8ad9131aa53ffde88f5b0df18e7c45bcdb6244edcaa8d386196d25297c259fca3be37f0f2015f40cb5423a918c51383390dfd5a8703

初步分析

题目给定了e,d,x,y,\(x = q^{-1} \mod p,y = p^{-1} \mod q\)(代码命名混乱)。

根据rsa的原理,\(ed == 1 \mod \phi(n)\),故\(e*d-1\)一定是\(\phi(n)\)的倍数,即\(e*d-1==k*\phi(n)\),\(k\)是整数,由于\(d<n\)故\(k<e\)。\(e\)的值不是很大,通过枚举可以确定所有\(k\)的可能值,代入\(e*d-1==k*\phi(n)=k*(p-1)*(q-1)\),得到关于\(p,q\)的方程。凭借直觉,通过\(x,y\)肯定能确定另外一个方程,最后解出\(p,q\)。

另一个方程的推导

\[xq = 1 + w_1*p,yp = 1 + w_2*q
\]
\[xq-1 = w_1*p,yp-1 = w_2*q
\]

我们的目的是得到\(p,q\)的数量关系,势必要去掉\(w_1,w_2\)。所以两边相乘\(xypq-xq-yp+1=w_1w_2pq\),\(xq+yp-1= (xy-w_1w_2)*pq\)。这里我们知道\(x<p,y<q\)。所以\(0<(xy-w_1w_2)*pq<2*pq\)。这样我们就知道了其实\(xy-w_1w_2=1\)。这样我们又得到了一个关于\(p,q\)的等式。通过两个方程联立,最终可以解出\(p,q\)的值。

解决脚本

依赖

  • pycryptodome
  • tqdm
  • gmpy2
from Crypto.Util.number import long_to_bytes
from tqdm import trange
import gmpy2,binascii d = 20899585599499852848600179189763086698516108548228367107221738096450499101070075492197700491683249172909869748620431162381087017866603003080844372390109407618883775889949113518883655204495367156356586733638609604914325927159037673858380872827051492954190012228501796895529660404878822550757780926433386946425164501187561418082866346427628551763297010068329425460680225523270632454412376673863754258135691783420342075219153761633410012733450586771838248239221434791288928709490210661095249658730871114233033907339401132548352479119599592161475582267434069666373923164546185334225821332964035123667137917080001159691927
x = 22886390627173202444468626406642274959028635116543626995297684671305848436910064602418012808595951325519844918478912090039470530649857775854959462500919029371215000179065185673136642143061689849338228110909931445119687113803523924040922470616407096745128917352037282612768345609735657018628096338779732460743
y = 138356012157150927033117814862941924437637775040379746970778376921933744927520585574595823734209547857047013402623714044512594300691782086053475259157899010363944831564630625623351267412232071416191142966170634950729938561841853176635423819365023039470901382901261884795304947251115006930995163847675576699331
e = 1048583 klist = []
for i in trange(1,e):
if (e*d-1)%i==0:
klist.append(i)
print(len(klist))
nlist = []
for k in klist:
w = (e*d-1)//k
a = y-1
b = x-y-w
c = 1-x+w*x
delt = b*b-4*a*c
if delt<0 :
continue
s,t = gmpy2.isqrt_rem(delt)
if t!=0:
continue
if (s-b)%(2*a)!=0:
continue
q = (s-b)//(2*a)
if (w+q-1)%(q-1)!=0:
continue
p = (w+q-1)//(q-1)
n = p*q
nlist.append(n)
print(nlist)
n = 22509077260984027608263845908083202879597081619164800783060781115945741547031252889863077300004310236160814653393991988068104999928735140821504649764471313283345921984799288521496479399032837319974588038186917872597078510975400908137738190304700710900604891709265153418588830065918981914371070605822998222527238465925300150253661563857557769597206945843298561291788401379974127990007737364134474570192828364417568030703631487414510799126846577679080152555651843717973023204220528124089432708534457966658829476472791371567790491496967424845002161008643478300481541860754837427906812836584810660110698219790829058527133
c = 0x32074de818f2feeb788e36d7d3ee09f0000381584a72b2fba0dcc9a2ebe5fd79cf2d6fd40c4dbfea27d3489704f2c1a30b17a783baa67229d02043c5bc9bdb995ae984d80a96bd79370ea2c356f39f85a12d16983598c1fb772f9183441fea5dfeb5b26455df75de18ce70a6a9e9dbc0a4ca434ba94cf4d1e5347395cf7aafa756c8a5bd6fd166bc30245a4bded28f5baac38d024042a166369f7515e8b0c479a1965b5988b350064648738f6585c0a0d1463bd536d11a105bb926b44236593b5c6c71ef5b132cd9c211e8ad9131aa53ffde88f5b0df18e7c45bcdb6244edcaa8d386196d25297c259fca3be37f0f2015f40cb5423a918c51383390dfd5a8703
m = gmpy2.powmod(c,d,n)
print(long_to_bytes(m))

HITCON 2019 Lost Modular again writeup的更多相关文章

  1. 【CTF】2019湖湘杯 miscmisc writeup

    题目来源:2019湖湘杯 题目链接:https://adworld.xctf.org.cn/task/answer?type=misc&number=1&grade=1&id= ...

  2. Crypto CTF 2019 writeup

    Crypto CTF 2019 writeup roXen 题目 roXen Relationship with a cryptographer! The Girlfriend: All you ev ...

  3. 2019全国大学生信息安全与对抗技术竞赛全国线下总决赛 Writeup

    0x00 Begin 关于 ISCC 2019 北理工总决赛,这一次比赛体验感总体差不多,最后我们战队荣获全国一等奖第一名,在这里非常感谢我的团队以及我的队友. 0x01 Reverse 下载题目:e ...

  4. 2019年上海市大学生网络安全大赛两道misc WriteUp

    2019年全国大学生网络安全邀请赛暨第五届上海市大学生网络安全大赛 做出了两道Misc== 签到 题干 解题过程 题干提示一直注册成功,如果注册失败也许会出现flag. 下载下来是包含010edito ...

  5. 第16届(2019)全国大学生信息安全与对抗技术竞赛全国线下总决赛 Writeup

    笔者<Qftm>原文发布<BitHack>:https://bithack.io/forum/469/answer/333 0x00 Begin 关于 ISCC 2019 北理 ...

  6. 2019年领航杯 江苏省网络信息安全竞赛 初赛部分writeup

    赛题已上传,下载连接:https://github.com/raddyfiy/2019linghangcup 做出了全部的misc和前三道逆向题,排名第10,暂且贴一下writeup. 关卡一 编码解 ...

  7. 2019 第十届 SWPUCTF writeup(Pwn)

    p1KkHeap 0.环境 1.文件信息 2.文件开启的保护 3.IDA分析 main函数 add show edit delete delete功能出现了指针悬浮的问题,配合上tcache,可以任意 ...

  8. 2019全国大学生信息安全竞赛部分Web writeup

    JustSoso 0x01 审查元素发现了提示,伪协议拿源码 /index.php?file=php://filter/read=convert.base64-encode/resource=inde ...

  9. 2019第十二届全国大学生信息安全实践创新赛线上赛Writeup

    本文章来自https://www.cnblogs.com/iAmSoScArEd/p/10780242.html  未经允许不得转载! 1.MISC-签到 下载附件后,看到readme.txt打开后提 ...

随机推荐

  1. MySQL全面瓦解29:使用Partition功能实现水平分区

    1 回顾 上一节我们详细讲解了如何对数据库进行分区操作,包括了 垂直拆分(Scale Up 纵向扩展)和 水平拆分(Scale Out 横向扩展) ,同时简要整理了水平分区的几种策略,现在来回顾一下. ...

  2. 【leetcode】212. Word Search II

    Given an m x n board of characters and a list of strings words, return all words on the board. Each ...

  3. How exactly does Google AdWords work?

    The key to how Google AdWords works is the Quality Score. Quality Score is generally how well an ad ...

  4. JVM——对象已“死”的判定

    主要针对Java堆和方法区 1.判断对象是否已"死" Java堆中存放着几乎所有的对象实例,垃圾回收器在对堆进行回收之前,首先应该判断这些对象哪些还"存活",哪 ...

  5. Output of C++ Program | Set 12

    Predict the output of following C++ programs. Question 1 1 #include <iostream> 2 using namespa ...

  6. Linux:-e、-d、-f、-L、-r、-w、-x、-s、-h、

    -e filename 如果 filename存在,则为真 -d filename 如果 filename为目录,则为真 -f filename 如果 filename为常规文件,则为真 -L fil ...

  7. Enumeration遍历http请求参数的一个例子

    Enumeration<String> paraNames=request.getParameterNames(); for(Enumeration e=paraNames;e.hasMo ...

  8. my43_mysql内存相关概念

    相关参数 read_buffer_size https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_re ...

  9. Jmeter初级入门教程

    <jmeter:菜鸟入门到进阶>系列 创建一个简单的自动化脚本 创建线程组[Thread Group]: 右击[TestPlan]选择[Add]--[Thread(Users)]--[Th ...

  10. ssm+ajax实现登陆

    ssm的搭建见上一章 1.数据协议层 public User selectByLoginnameAndPassword(@Param("loginname")String logi ...