Proximal Algorithms 6 Evaluating Proximal Operators
需要注意的一点是,本节所介绍的例子可以通过第二节的性质进行延展.
一般方法
一般情况下proximal需要解决下面的问题:
其中\(x \in \mathbb{R}^n\), \(\mathcal{C} = \mathbf{dom} f\).
我们可以使用梯度方法(或次梯度)方法来求解, 还有一些投影方法, 内点法等等.
二次函数
如果\(f(x) = (1/2) x^TAx + b^Tx + c\), 其中\(A \in \mathbb{S}^n_+\),于是:
\]
证:
设\(\varphi(x) = (1/2)x^TAx\), 根据第二节介绍的仿射性质可得:
\]
又\(\partial \varphi=A\), 故得证.
特别的\(f(x) = b^Tx + c\)则\(\mathbf{prox}_{\lambda f}(v)=v-\lambda b\), \(f(x)=c\), \(\mathbf{prox}_{\lambda f}(v)=v\), 而当\(f(x)=(1/2)\|\cdot\|_2^2\)时:
\]
这玩意儿有时候被称为压缩算子.
估计proximal operator的时候,需要求解一个线性方程组:
\]
线性方程组怎么求解这里就不讨论了吧.
不过,这个应该多数用在\(f(x) + g(x)\)这种情况吧,因为如果单纯想要最小化\(f(x)\),直接可以求出显示解,所以可能是\(f(x) + |x|\)这种类型的?
平滑函数
文章里介绍了如何用梯度方法和牛顿方法,不提了.
标量函数
\(f: \mathbb{R} \rightarrow \mathbb{R} \cup \{+\infty\}\), 通过之前几节的介绍,这个情况还是蛮有意义的,因为通过proximal operator的可分性质等,有很好的扩展.
显然,此时,最优条件为:
\]
比如:
\Rightarrow \mathbf{prox}_{\lambda f}(v) = \frac{v+\sqrt{v^2 + 4\lambda}}{2}
\]
又比如当\(f(x) = |x|\):
一般的标量函数
如果对于\(f\),其次梯度是可获得的,那么我们可以利用localization method来有效估计\(\mathbf{prox}_{\lambda f}\), 这种方法有点类似于二分法.
我们从\([l, u] \in \mathbf{dom} f\)开始, 如果\(v\)在区间之外,返回最靠近\(v\)的点?(应该就是挑\(\mathbf{dom} f\)中最靠经\(v\)的点作为边界吧) 算法会在\(u-l < \epsilon\)的时候终止.
注:上面的第一步的意思应该是如果\(v\)在区间里面就取\(v\),否则取中间的点.
如果\(g>0\),那么\(\varphi(z) \ge \varphi(x) + g(z-x)\), 显然,当\(z>x\)不是最优的,而\(z = x-\lambda g\)是一个下界. 为了说明这一点,假设\(h_z \in \partial f(z)\). 因为\(g>0, \lambda >0\), 所以\(z < x\),则\(h_z \le h\)(因为凸函数的次梯度是单调的), 令:
\]
于是
\]
等式右边是\(h_z-h\le0\), 所以新的\([l, u]\)就是一端小于0,一端大于0, 不过这对一开始的\(l, u\)有要求吧.
如果\(f\)是二阶连续可微的,那么,可以用guarded Newton方法来找\(x^*\),不理解曲中的缘由,贴个图吧.
多边形
这一小节,考虑投影至多边形的问题,多边形可以用 一系列线性方程和不等式描述:
\]
其中\(A \in \mathbb{R}^{m \times n}, C = \mathbb{R}^{p \times n}\).
投影问题可以表示为(计算\(\mathbf{prox}\)便会遇到此问题):
对偶
当\(m, p\)都远小于\(n\)的时候,利用对偶方法是方便的.
(6.4)的对偶问题是:
其中\(v \in \mathbb{R}^m, \eta \in \mathbb{R}^p\)为对偶变量(上面的式子不难推出,这里不证了).
对偶问题是:
\max & g(v, \eta) \\
s.t. & \eta \ge 0
\end{array}
\]
这是一个\(m+p\)个变量的二阶规划(QP)问题,且:
\]
这个最优解的恢复是由KKT条件得来的.上面的问题,似乎可以用内点法有效解决,下次找机会再看看. 文章还提到了如何使得QP问题能够简单并行,这里便不多赘述了.
仿射集合
即
\]
则:
\]
其中\(A^{\dagger}\)是伪逆.
如果\(m<n, A\)满秩,那么:
\]
这个我可以用一种比较麻烦的方法证明.
假设最优解为:\(v-A^T(AA^T)^{-1}(Av-b)+u\),因为
\]
所以,根据线性方程组解的理论可知:
\]
那么问题可以转换为:
\min & \|A^T(AA^T)^{-1}(Av-b)-u\|_2^2 \\
s.t. & Au=0
\end{array}
\]
再根据线性方程组的理论可知,\(u\)属于\(A\)的核,设:
\]
其中\(U \in \mathbb{R}^{m \times k }, D \in \mathbb{R}^{k \times k}, V \in \mathbb{R}^{n \times k}\).
我们只要找出\(A^T(AA^T)^{-1}(Av-b)\)在核空间的投影即可:
\]
即投影为0,也就是说\(x=0\), 这也就证明了
\]
半平面
此时\(\mathcal{C} = \{x | a^Tx \le b\}\), 而:
\]
其中\((u)_+=\max \{u, 0\}\).
这个可以画个图来证明,注意到\(\frac{(a^Tv-b)_+}{\|a\|_2^2}\)和点到直线距离的联系.
Box
box为如下形式\(\mathcal{C} = \{x | l \le x \le u\}\), 及:
如果\(\mathcal{C}= \mathbb{R}^n_+\)则:
\]
这个感觉是显然的.
Simplex
Simplex 为如下形式\(\mathcal{C} = \{z| z\ge 0, 1^Tz=1\}\), 及
\]
对于某些\(\nu \in \mathbb{R}\).
满足
\]
利用二分法可以求解.
Cones
令\(\mathcal{K}\)为锥,以及\(\mathcal{K}^*\)为其对偶锥. 那么问题为:
\min & \|x-v\|_2^2 \\
s.t. & x \in \mathcal{K}
\end{array}
\]
对偶锥的定义:
\]
对偶最优条件为:
\(v=x-\lambda\)这个条件我是存疑的,这样子原问题应该是\(\frac{1}{2}\|x-v\|_2^2\),当然,这应该无伤大雅.
二阶锥
\]
上面的东西,通过考虑下面的问题:
\min_{x,t} & \|v-x\|_2^2+(s-t)^2 \\
s.t. & \|x\|_2 \le t
\end{array}
\]
可以获得, 第二种情况是不需讨论的, 那么先来看第一种情况。
在\(t\le \|v\|\)的情况下,\(x=t\frac{v}{\|v\|}\), 不妨令\(u=\frac{v}{\|v\|}\).则,原问题为:
\]
在\(t=\frac{\|v\|+s}{2}\)处取得极值,但是\(\|v\|\le-s\), 所以此时\(t\le0\), 所以\(t=0\). \(t >\|v\|\)的时候,\(x=v\),于是原问题为:
\]
那么\(t=\|v\|\),显然没有0的时候小.
第三种情况的分析是类似的.
半正定锥
\(\mathcal{C} = \mathbb{S}^n_+\), 此时
\]
其中\(\sum_{i=1}^n \lambda_i u_iu_i^T\)为特征分解.
指数锥
不了解,截个图吧
Pointwise maximum and supremum
max
如果\(f(x) = \max_{i} x_i\), 根据其上镜图,我们有等价形式:
\min & t + (1/2\lambda) \|x-v\|_2^2 \\
s.t. & x_i \le t, \: i=1,\ldots, n
\end{array}
\]
其拉格朗日对偶形式为:
\]
KKT条件为:
如果\(x_i^* < t^*\),则表示(通过第三个条件)\(\mu_i^*=0\), 如果\(x^*=t^*\),则表示\(u_i^*=(1/\lambda)(v_i-t^*)\), 又\(\mu_i^* \ge 0\), 总结为:
\]
再根据第五个条件可得:
\]
这个可以用半分法求解,初始的区间为\([\min_i v_i -(1/n), \max_i v_i]\).
最后
\]
support function
\(\mathcal{C}\)是一个凸集,其support function为:
\]
support function的共轭是指示函数.
\]
通过Moreau 分解我们知道:
\]
一个例子是\(f(x) = x_{[1]}+x_{[2]}+\ldots + x_{[k]}\), 表\(x\)的前k个最大的和,可以用以下凸集的support function来表示:
\]
Norms and norm balls
\(f=\|\cdot\|\)为一般的定义在\(\mathbb{R}^n\)上的范数,则\(f^*=I_{\mathcal{B}}\), 其中\(\mathcal{B}\)为对偶范数的单位球.
我们知道\(f(x)=\sup_y \{y^Tx|\|y\|_*\le 1\}\), 此为\(\mathcal{B}=\{y | \|y\|_*\le 1\}\)的支撑函数,故\(f^*=I_{\mathcal{B}}\).
对偶不是共轭的特例?
于是根据Moreau分解,有以下式子成立:
Euclidean 范数
当\(f = \|\cdot\|_2\)的时候:
以及:
\(\ell_1\) and \(\ell_{\infty}\) norms
\(\ell_{\infty}\)的\(\mathcal{B}\)是box,所以根据之前讨论过的:
引文\(\ell_1\)和\(\ell_{\infty}\)互为对偶,所以当\(f=\|\cdot\|_1\)的时候:
可以用更为紧凑的形式表示:
\]
欲计算\(\ell_{\infty}\)的proximal operator并不容易,因为投影到\(\ell_1\)的单位球比较麻烦.
我们需要计算一个\(\lambda\),满足:
\]
可以用类似半分法的方法求解.
Elastic net
\(f(x) = \|x\|_1 + (\gamma/2) \|x\|_2^2\), \(\gamma > 0\).
此时
\]
范数和
\]
其中\(\mathcal{G}\)是\([n]\)的一个分割, 则:
\]
sublevel set and epigradph
下水平集
\(f\)的\(t-\)下水平集合为:
\]
假设\(v \not \in \mathcal{S}\) , 否则\(\Pi_{\mathcal{S}}(v)=v\).
此时\(\Pi_{\mathcal{S}}(v)\)可以转化为下列问题:
\min & \frac{1}{2}\|x-v\|_2^2 \\
s.t. & f(x) \le t.
\end{array}
\]
通过KKT条件可得最优条件为:
\]
第一个条件,表示\(\Pi_{\mathcal{S}}(v) = \mathbf{prox}_{\lambda f}(v)\), 再根据第二个条件可得:
\]
我们可以通过二分法来寻找\(\lambda\).
上镜图
函数\(f\)的上镜图为:
\]
针对\(\Pi_{\mathbf{epi} f}(v, s)\):
\min & \frac{1}{2} \|x-v\|_2^2 + \frac{1}{2}(t-s)^2 \\
s.t. & f(x) \le t.
\end{array}
\]
同样假设\(f(v) > s\)KKT条件为:
0 \in x-v + \lambda \partial f(x) \\
t-s=\lambda \\
\lambda > 0.
\]
所以
\]
论文说这个问题比较难成立,有另外一种表示方法:
不知道怎么推的.
Matrix functions
Elementwise functions
这里将矩阵\(A \in \mathbb{R}^{m \times n}\)视为\(\mathbb{R}^{mn}\)的向量,就能利用之前的方法了,比如\(\ell_1\)的方法:
\]
正交不变
函数\(F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}\),正交不变是指:
\]
其中\(U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{m \times m}\)为正交矩阵, 这也意味着:
\]
其中\(\sigma_s:\mathbb{R}^{m\times n }\rightarrow \mathbb{R}^{\min\{m, n\}}\)是奇异值映射.
正交不变算子\(F\)可以表示为:\(f \circ \sigma_s\), 而
\]
其中\(X= V\mathbf{diag}(\sigma_s(X))U\). 这个的推导见之前关于矩阵次梯度的介绍.
这意味着:
\]
这个没依照论文来,论文似乎有更加直接的证明方法,我来讲一下我的:
\mathbf{prox}_{\lambda F}(A) &= \mathrm{argmin} \quad \lambda F(X) + \frac{1}{2} \|X-A\|_F^2 \\
\end{array}
\]
最优条件为:
\]
假设\(X= V\mathbf{diag}(\sigma_s(X))U\), 则:
\]
显然\(A\)的奇异值分解也为:
\Rightarrow \lambda \mathbf{diag}(\mu)+\mathbf{diag}(\sigma_s(X))=\mathbf{diag}(\sigma_s(A))
\]
而
\mathbf{prox}_{\lambda f}(\sigma_s(A)) &= \mathrm{argmin}_{\sigma_s(X)} \quad \lambda f(\sigma_s(X)) + \frac{1}{2} \|\sigma_s(X)-\sigma_s(A)\|_2^2. \\
\end{array}
\]
其最优条件为:
\]
显然二者的最有条件是一样的,所以成立.
当\(F: \mathbb{S}^n \rightarrow \mathbb{R}\), 且\(F(UXU^T)=F(X)\):
\]
其中\(A=U\mathbf{diag}(\sigma(A))U^T\).
后面还有一些关于矩阵范数,一些特殊集合的投影,以及如何求解对数障碍问题.
Proximal Algorithms 6 Evaluating Proximal Operators的更多相关文章
- Proximal Algorithms
1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms 3 Interpretation
目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...
- Proximal Algorithms 1 介绍
目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...
- Proximal Algorithms 7 Examples and Applications
目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- Proximal Gradient Descent for L1 Regularization
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题: ...
- 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)
深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO) 2018-07-17 16:54:51 Reference: https://b ...
随机推荐
- 日常Java 2021/10/12
封装 在面向对象程式设计方法中,封装是指-种将抽象性函式接口的实现细节部分包装.隐藏起来的方法 封装可以被认为是一个保护屏障,防止该类的代码和数据被外部类定义的代码随机访问 要访问该类的代码和数据,必 ...
- A Child's History of England.31
The English in general were on King Henry's side, though many of the Normans were on Robert's. But t ...
- Android权限级别(protectionLevel)
通常情况下,对于需要付费的操作以及可能涉及到用户隐私的操作,我们都会格外敏感. 出于上述考虑以及更多的安全考虑,Android中对一些访问进行了限制,如网络访问(需付费)以及获取联系人(涉及隐私)等. ...
- c学习 - 算法
简介: 一个程序包括两方面内容:数据结构.算法 数据结构:对数据的描述,包括数据的类型和数据的组织形式 算法:对操作的描述,即操作步骤 (程序=算法+数据结构) 算法是灵魂,数据结构是加工对象,语言是 ...
- zabbix之故障自治愈和分层报警
在agent端修改配置文件 root@ubuntu:~# vim /etc/sudoers zabbix ALL=(ALL) NOPASSWD:ALL#:重启服务root@ubuntu:~# syst ...
- java实现数组集合转成json格式
一.下载fastjson.jar http://repo1.maven.org/maven2/com/alibaba/fastjson 二.项目添加jar包 Java Build Path 三.导入类 ...
- 简单的Spring Boot项目——实现连接Mysql数据库
一.创建Spring Boot项目 参考:使用IntelliJ IDEA创建简单的Spring Boot项目 二.数据库.表的创建 三.项目开发 3.1 pom.xml文件配置 <?xml ve ...
- spring中JDBCTemplate的简单应用
package cn.itcast.datasource.jdbctemplate;import cn.itcast.utils.JDBCUtils;import org.springframewor ...
- 【MySQL】查询不在表中的数据
1.方法一(仅适用单个字段):使用 not in ,比较容易理解,缺点是效率低 如:select A.ID from A where A.ID not in (select ID from B): 2 ...
- 【C#】【MySQL】C#连接MySQL数据库(二)解析
C# MySQL 实现简单登录验证 后端代码解析 Visual Studio中使用MySQL的环境配置 下文所有到的代码(前端后端) 请查阅这篇博文 C#连接MySQL数据库(一)代码 获取前端数据 ...