@

A pure L1-norm principal component analysis

虽然没有完全弄清楚其中的数学内涵,但是觉得有趣,记录一下.

问题

众所周知,一般的PCA(论文中以\(L_2-PCA\)表示)利用二范数构造损失函数并求解,但是有一个问题就是会对异常值非常敏感. 所以,已经有许多的PCA开始往\(\ell_1\)范数上靠了,不过我所知道的和这篇论文的有些不同.

像是Zou 06年的那篇SPCA中:



注意到,\(\ell_1\)作用在\(\beta\)上,以此来获得稀疏化.

这篇论文似乎有些不同,从回归的角度考虑, 一般的回归问题是最小化下列损失函数:

\[\sum_{i=1}^n (y_i - (\beta_0 + \mathbf{\beta}^Tx_i))^2.
\]

为了减小异常值的影响,改用:

\[\sum_{i=1}^n |y_i - (\beta_0 + \mathbf{\beta}^Tx_i)|.
\]

而作者指出,上面的问题可以利用线性规划求解:



回到PCA上,我们希望找到一个方向,样本点到此方向上的\(\ell_1\)距离之和最短(可能理解有误的).

细节

\(L_1-PCA\)的损失函数

首先,假设输入的数据\(x_i \in \mathbb{R}^m\), 并构成数据矩阵\(X \in \mathbb{R}^{n \times m}\). 首先,作者希望找到一个\(m-1\)维的子空间,而样本点到此子空间的\(\ell_1\)距离和最短. 在此之前,需要先讨论距离的计算.



从上图可以看到,一个点到一个超平面\(S\)的\(\ell_1\)距离并不像普通的欧氏距离一样,实际上,可以这么定义点到子空间的距离:

\[d(x,S)=\inf \{\|x-z\|| \forall z \in S\}.
\]

假设超平面S由\(\beta^T x=0\)刻画(假设其经过原点), 则:

首先,对于一个样本点\(x_i\), 选择一个\(j\), 令\(y_i=z_i, i = \not j\), 而\(y_j\)定义为(假设\(\beta_j = \not 0\)):

\[-\frac{\sum_{i = \not j} \beta_i x_i}{\beta_j}
\]

于是容易证明\(\beta^T y=0\), 也就是\(y \in S\).

下面证明, 如果这个\(j\)使得\(|\beta_j| \ge |\beta_i|, \forall i = \not j\), 那么\(|x-y|\)就是\(x\)的\(\ell_1\)距离. 首先证明,在只改变一个坐标的情况下是最小的, 此时:

\[|x-y| = |x_j+\frac{\sum_{i = \not j} \beta_i x_i}{\beta_j}|=|\frac{\sum_{i } \beta_i x_i}{\beta_j}|=\frac{|\beta^Tx|}{|\beta_j|}.
\]

因为分子是固定的,所以分母越大的距离越短,所以在只改变一个坐标的情况下是如此,下面再利用数学归纳法证明,如果距离最短,那么必须至多只有一个坐标被改变.

\(m=2\)的时候容易证明,假设\(m=k-1\)的时候已经成立,证明\(m=k\)也成立:

如果\(x, y\)已经存在一个坐标相同,那么根据前面的假设可以推得\(m=k\)成立,所以\(x, y\)必须每个坐标都完全不同. 不失一般性,选取\(\beta_1, \beta_2\),且假设均不为0, 且\(|\beta_1| \le |\beta_2|\).

令\(y'_1=x_1, y'_2=y_2-\frac{\beta_1(x_1-y_1)}{\beta_2}\),其余部分于\(y\)保持相同.则距离产生变化的部分为:

\[|x_1-y_1'|+|x_2-y_2'|=|y_2-x_2 - \frac{\beta_1(x_1-y_1)}{\beta_2}|\le |y_2-x_2|+|x_1-y_1|
\]

所以,新的\(y'\)有一个坐标相同,而且距离更短了,所以\(m=k\)也成立.

所以,我们的工作只需要找到最大\(|\beta_j|\)所对应的\(j\)即可.

所以,我们的损失函数为:

\[\sum_i \frac{|\beta^T x_i|}{|\beta_j|}.
\]

因为比例的关系,我们可以让\(\beta_j=-1\)而结果不变:

\[\sum_i |x_{ij}-\sum_{k = \not j}\beta_kx_{ik}|.
\]

把\(x_{ij}\)看成是\(y\),那么上面就变成了一个\(\ell_1\)回归问题了. 当然我们并不知道\(j\),所以需要进行\(m\)次运算,来找到\(j^*\)使得损失函数最小. 这样,我们就找到了一个\(m-1\)维的子空间.

算法如下:

\(L_1-PCA\)算法

因为PCA的目的是寻找一个方向,而不是一个子空间,所以需要不断重复寻找子空间的操作,这个地方我没怎么弄懂,不知是否是这样:

  1. 找到了一个子空间
  2. 将数据点投影到子空间上
  3. 寻找新的坐标系,则数据会从\(k\)-->\(k-1\)维
  4. 在新的数据中重复上面的操作直至\(k=1\).

有几个问题:

投影

对应算法的第4步,其中



需要一提的是,这里应该是作者的笔误,应当为:

\[(I_{j^* \ell}^{j^*})^m = \beta_{\ell}^m, \ell = \not j^*,
\]

理由有二:

首先,投影,那么至少要满足投影后的应当在子空间中才行,以3维样本为例:\(x=(x_1, x_2, x_3)^T, j=2\),

按照修改后的为:

\[z = (x_1, \beta_1x_1+\beta_3 x_3, x_3)
\]

于是\(\beta^Tz=0\), 而按照原先则不成立,

其次,再后续作者给出的例子中也可以发现,作者实际上也是按照修改后的公式进行计算的.

另外,提出一点对于这个投影方式的质疑. 因为找不到其理论部分,所以猜想作者是想按照\(\ell_1\)的方式进行投影,但是正如之前讲的,\(\ell_1\)的最短距离的投影是要选择\(|\beta_j|\)最大的\(j\),而之前选择的\(j^*\)并不能保证这一点.

坐标系

论文中也有这么一段话.

既然\(\ell_1\)范数不具备旋转不变性,那么如何保证这种坐标系的选择是合适的呢,还有,这似乎也说明,我们最后选出来的方向应该不是全局最优的吧.

载荷向量

\(\alpha^k\)是第k个子空间的载荷向量,所以,所以和SPCA很大的一个区别是它并不是稀疏的.

另外,它还有一个性质,和由\(V^k\)张成的子空间正交,这点很好证明,因为\(Z^k\beta=0\).

总的来说,我觉得这个思想还是蛮有意思的,但是总觉得缺乏一点合理的解释,想当然的感觉...

A pure L1-norm principal component analysis的更多相关文章

  1. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  2. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  3. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  4. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  5. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  6. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

  7. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  8. Principal Component Analysis ---- PRML读书笔记

    To summarize, principal component analysis involves evaluating the mean x and the covariance matrix ...

  9. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

随机推荐

  1. Ecshop 安装

    参考 http://www.68ecshop.com/article-617.html ecshop的安装第一步:下载ecshop网店系统正式版安装包 我们可以来ecshop开发中心的官网(www.6 ...

  2. 【leetcode】122.Best Time to Buy and Sell Stock II(股票问题)

    You are given an integer array prices where prices[i] is the price of a given stock on the ith day. ...

  3. mysql删除数据后不释放空间问题

    如果表的引擎是InnoDB,Delete From 结果后是不会腾出被删除的记录(存储)空间的. 需要执行:optimize table 表名; eg:optimize table eh_user_b ...

  4. Linux基础命令---mailq显示邮件队列

    mailq mailq指令可以显示出待发送的邮件队列. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法       mailq   2.选项参数列表 ...

  5. 【Linux】【Shell】【Basic】条件测试和变量

    bash脚本编程       脚本文件格式:         第一行,顶格:#!/bin/bash         注释信息:#         代码注释:         缩进,适度添加空白行:   ...

  6. 从orderby引发的SQL注入问题的思考

    背景: 某一天准备上线,合完master之后准备发布了,忽然公司的代码安全监测提示了可能在代码中存在sql注入的风险,遂即检查,发现sql注入问题 既然碰到了这个问题,那就了简单了解下sql注入 基础 ...

  7. 【C/C++】vector 动态二维数组

    声明 vector<vector<int> vec; //赋值思路可以从这个很基础的操作里看出来 vector<int> a; a.push_back(1); a.pus ...

  8. jQuery选择器整理+知识总结

    jQuery选择器 没有不会遗忘的知识,还是做个总结吧! 一.基本分类 jQuery选择器大致可以分为两类,基本选择器和过滤选择器,总体结构体系如下:   二.基本选择器 基本选择器又可以分为三种,分 ...

  9. for循环中的变量泄漏

    经典的案例 let arr = [] for(var i =0;i<=5;i++){ arr[i]= function fn(){ console.log(i) } } arr[0]() //6 ...

  10. 【antd】如何自定义antd组件form表单中Form.Item里的内容组件

    需求:现有一个form表单,但是其中一个元素比较复杂,并不是简单的输入框或者下拉框之类的.但是我又希望能通过form.validateFields().then()去获得它的值,就不需要在当前页面写大 ...