[决策树]西瓜数据graphviz可视化实现
[决策树]西瓜数据graphviz可视化实现
一、问题描述:
使用西瓜数据集构建决策树,并将构建的决策树进行可视化操作。
二、问题简析:
首先我们简单的介绍一下什么是决策树。决策树是广泛用于分类和回归任务的模型。本质上,它从一层层的if/else问题中进行学习,并得出结论。
三、代码实现:
说明:本实例运行在linux环境下,通过jupyter notebook
运行。
依赖项:graphviz
下载GraphViz’s executables的网址:http://www.graphviz.org/
用pip安装的Graphviz,但是Graphviz不是一个python tool,仍然需要安装GraphViz’s executables。
sudo apt-get install graphviz
代码如下:
from random import choice
from collections import Counter
import math
# 定义数据集
D = [
{'色泽': '青绿', '根蒂': '蜷缩', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑', '好瓜': '是'},
{'色泽': '乌黑', '根蒂': '蜷缩', '敲声': '沉闷', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑', '好瓜': '是'},
{'色泽': '乌黑', '根蒂': '蜷缩', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑', '好瓜': '是'},
{'色泽': '青绿', '根蒂': '蜷缩', '敲声': '沉闷', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑', '好瓜': '是'},
{'色泽': '浅白', '根蒂': '蜷缩', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑', '好瓜': '是'},
{'色泽': '青绿', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '稍凹', '触感': '软粘', '好瓜': '是'},
{'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '稍糊', '脐部': '稍凹', '触感': '软粘', '好瓜': '是'},
{'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '稍凹', '触感': '硬滑', '好瓜': '是'},
{'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '沉闷', '纹理': '稍糊', '脐部': '稍凹', '触感': '硬滑', '好瓜': '否'},
{'色泽': '青绿', '根蒂': '硬挺', '敲声': '清脆', '纹理': '清晰', '脐部': '平坦', '触感': '软粘', '好瓜': '否'},
{'色泽': '浅白', '根蒂': '硬挺', '敲声': '清脆', '纹理': '模糊', '脐部': '平坦', '触感': '硬滑', '好瓜': '否'},
{'色泽': '浅白', '根蒂': '蜷缩', '敲声': '浊响', '纹理': '模糊', '脐部': '平坦', '触感': '软粘', '好瓜': '否'},
{'色泽': '青绿', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '稍糊', '脐部': '凹陷', '触感': '硬滑', '好瓜': '否'},
{'色泽': '浅白', '根蒂': '稍蜷', '敲声': '沉闷', '纹理': '稍糊', '脐部': '凹陷', '触感': '硬滑', '好瓜': '否'},
{'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '稍凹', '触感': '软粘', '好瓜': '否'},
{'色泽': '浅白', '根蒂': '蜷缩', '敲声': '浊响', '纹理': '模糊', '脐部': '平坦', '触感': '硬滑', '好瓜': '否'},
{'色泽': '青绿', '根蒂': '蜷缩', '敲声': '沉闷', '纹理': '稍糊', '脐部': '稍凹', '触感': '硬滑', '好瓜': '否'},
]
# ==========
# 决策树生成类
# ==========
class DecisionTree:
def __init__(self, D, label, chooseA):
self.D = D # 数据集
self.label = label # 哪个属性作为标签
self.chooseA = chooseA # 划分方法
self.A = list(filter(lambda key: key != label, D[0].keys())) # 属性集合A
# 获得A的每个属性的可选项
self.A_item = {}
for a in self.A:
self.A_item.update({a: set(self.getClassValues(D, a))})
self.root = self.generate(self.D, self.A) # 生成树并保存根节点
# 获得D中所有className属性的值
def getClassValues(self, D, className):
return list(map(lambda sample: sample[className], D))
# D中样本是否在A的每个属性上相同
def isSameInA(self, D, A):
for a in A:
types = set(self.getClassValues(D, a))
if len(types) > 1:
return False
return True
# 构建决策树,递归生成节点
def generate(self, D, A):
node = {} # 生成节点
remainLabelValues = self.getClassValues(D, self.label) # D中的所有标签
remainLabelTypes = set(remainLabelValues) # D中含有哪几种标签
if len(remainLabelTypes) == 1:
# 当前节点包含的样本全属于同个类别,无需划分
return remainLabelTypes.pop() # 标记Node为叶子结点,值为仅存的标签
most = max(remainLabelTypes, key=remainLabelValues.count) # D占比最多的标签
if len(A) == 0 or self.isSameInA(D, A):
# 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分
return most # 标记Node为叶子结点,值为占比最多的标签
a = self.chooseA(D,A,self) # 划分选择
for type in self.A_item[a]:
condition = (lambda sample: sample[a] == type) # 决策条件
remainD = list(filter(condition, D)) # 剩下的样本
if len(remainD) == 0:
# 当前节点包含的样本集为空,不能划分
node.update({type: most}) # 标记Node为叶子结点,值为占比最多的标签
else:
# 继续对剩下的样本按其余属性划分
remainA = list(filter(lambda x: x != a, A)) # 未使用的属性
_node = self.generate(remainD, remainA) # 递归生成子代节点
node.update({type: _node}) # 把生成的子代节点更新到当前节点
return {a: node}
# 定义划分方法
# 随机选择
def random_choice(D, A, tree: DecisionTree):
return choice(A)
# 信息熵
def Ent(D,label,a,a_v):
D_v = filter(lambda sample:sample[a]==a_v,D)
D_v = map(lambda sample:sample[label],D_v)
D_v = list(D_v)
D_v_length = len(D_v)
counter = Counter(D_v)
info_entropy = 0
for k, v in counter.items():
p_k = v / D_v_length
info_entropy += p_k * math.log(p_k, 2)
return -info_entropy
# 信息增益
def information_gain(D, A, tree: DecisionTree):
gain = {}
for a in A:
gain[a] = 0
values = tree.getClassValues(D, a)
counter = Counter(values)
for a_v,nums in counter.items():
gain[a] -= (nums / len(D)) * Ent(D,tree.label,a,a_v)
return max(gain.keys(),key=lambda key:gain[key])
# 创建决策树
desicionTreeRoot = DecisionTree(D, label='好瓜',chooseA=information_gain).root
print('决策树:', desicionTreeRoot)
# 决策树可视化类
class TreeViewer:
def __init__(self):
from graphviz import Digraph
self.id_iter = map(str, range(0xffff))
self.g = Digraph('G', filename='decisionTree.gv')
def create_node(self, label, shape=None):
id = next(self.id_iter)
self.g.node(name=id, label=label, shape=shape, fontname="Microsoft YaHei")
return id
def build(self, key, node, from_id):
for k in node.keys():
v = node[k]
if type(v) is dict:
first_attr = list(v.keys())[0]
id = self.create_node(first_attr+"?", shape='box')
self.g.edge(from_id, id, k, fontsize = '12', fontname="Microsoft YaHei")
self.build(first_attr, v[first_attr], id)
else:
id = self.create_node(v)
self.g.edge(from_id, id, k, fontsize = '12', fontname="Microsoft YaHei")
def show(self, root):
first_attr = list(root.keys())[0]
id = self.create_node(first_attr+"?", shape='box')
self.build(first_attr, root[first_attr], id)
self.g.view()
# 显示创建的决策树
viewer = TreeViewer()
viewer.show(desicionTreeRoot)
输出结果:
决策树: {'纹理': {'清晰': {'根蒂': {'蜷缩': '是', '硬挺': '否', '稍蜷': {'色泽': {'青绿': '是', '浅白': '是', '乌黑': {'触感': {'硬滑': '是', '软粘': '否'}}}}}}, '稍糊': {'触感': {'硬滑': '否', '软粘': '是'}}, '模糊': '否'}}
在jupyter notebook的运行效果如图:
参考:
Python机器学习之决策树(使用西瓜数据集构建决策树,并将其可视化,graphviz程序下载)
[决策树]西瓜数据graphviz可视化实现的更多相关文章
- 图数据 3D 可视化在 Explorer 中的应用
本文首发于 NebulaGraph 公众号 前言图数据可视化是现代 Web 可视化技术中比较常见的一种展示方式,NebulaGraph Explorer 作为基于 NebulaGraph 的可视化产品 ...
- 11,SFDC 管理员篇 - 报表和数据的可视化
1,Report Builder 1,每一个report type 都有一个 primay object 和多个相关的object 2,Primary object with related obje ...
- MetricGraphics.js – 时间序列数据的可视化
MetricsGraphics.js 是建立在D3的基础上,被用于可视化和布局的时间序列数据进行了优化.它提供以产生一个原则性的,一致的和响应式的方式的图形常见类型的简单方法.该库目前支持折线图,散点 ...
- 利用 t-SNE 高维数据的可视化
利用 t-SNE 高维数据的可视化 具体软件和教程见: http://lvdmaaten.github.io/tsne/ 简要介绍下用法: % Load data load ’mnist_trai ...
- 基于 HTML5 的 WebGL 和 VR 技术的 3D 机房数据中心可视化
前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...
- OneAPM大讲堂 | 监控数据的可视化分析神器 Grafana 的告警实践
文章系国内领先的 ITOM 管理平台供应商 OneAPM 编译呈现. 概览 Grafana 是一个开源的监控数据分析和可视化套件.最常用于对基础设施和应用数据分析的时间序列数据进行可视化分析,也可以用 ...
- LDA模型数据的可视化
""" 执行lda2vec.ipnb中的代码 模型LDA 功能:训练好后模型数据的可视化 """ from lda2vec import p ...
- circso 对数据进行可视化
circos可以用来绘制圈图,能够对染色体上的数据进行可视化,首先需要一个染色体的文件 染色体的文件如下,每列之间空格分隔 chr - chr1 chr1 chr - chr2 chr2 chr - ...
- 初识Dash -- 构建一个人人都能够轻松上手的界面,操控数据和可视化
从事数据科学工作,少不了使用Pandas.scikit-learn这些Python生态系统中的利器,还有就是控制工作流的Jupyter Notebooks,没的说,你和同事都爱用.但是,要想将工作成果 ...
随机推荐
- 零基础学习java------day5------do....while循环、嵌套、方法(函数)
1 do...while循环 格式 初始化语句; do { 循环体语句; 控制条件语句; }while(判断条件语句); 流程: 先执行初始化语句 再执行循环体语句 再执行条件控制语句 再做条件的判 ...
- JS去除对象或数组中的空值('',null,undefined,[],{})
javascript去掉对象或数组中的'',null,undefined,[],{}.思路就是创建一个新的空对象,然后对传入的对象进行遍历,只把符合条件的属性返回,保留有效值,然后就相当于把空值去掉了 ...
- 纯CSS圆环与圆
1. 两个标签的嵌套: <div class="element1"> <div class="child1"></div> ...
- fastjson转换数字时,格式化小数点
使用fastjson类库转换java对象时,对于BigDecimal类型,有时需要特殊格式,比如: 1.0,转为json时候,要求显式为1,因此需要在转换时做处理.步骤如下: 1.新建类,实现Valu ...
- Java中方法的定义与使用
Java中方法的定义与使用 1.方法的定义: 方法是一段可以被重复调用的代码块. 方法的声明: public static 方法返回值 方法名([参数类型 变量--]){ 方法代码体: return ...
- Linux上Zookeeper集群搭建
一.官网 https://zookeeper.apache.org/ 二.下载安装 (1)下载 复制链接地址 http://mirror.bit.edu.cn/apache/zookeeper/zo ...
- 会话-cookie
package com.hopetesting.cookie;import javax.servlet.ServletException;import javax.servlet.annotation ...
- 【C/C++】小红的字符串 / 中兴捧月
考试的时候想复杂了,其实直接一边写放进set里去重就可以了 很有意思 自己的理解就是cpp的map+set或者就是set可以完成大多数java的hashset操作 链接:https://ac.nowc ...
- 阿里云RDS备份 恢复到本地
目录 一.恢复准备 二.具体操作 一.恢复准备 阿里云RDS默认配置了全备份+binlog,可以精准恢复到某个时间点上. 可以下载备份的包到本地,进行本地恢复,要预留好本地的数据库容量和cpu等规格, ...
- Nginx区分浏览器
目录 一.简介 二.配置 一.简介 场景: 不同浏览器对网页的兼容性是不一样的,所以针对火狐和curl,返回不同内容 原理: 使用if对http_user_agent变量进行判断,这个变量会显示访问时 ...