Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4153    Accepted Submission(s): 1607

Problem Description
Although
winter is far away, squirrels have to work day and night to save beans.
They need plenty of food to get through those long cold days. After
some time the squirrel family thinks that they have to solve a problem.
They suppose that they will save beans in n different trees. However,
since the food is not sufficient nowadays, they will get no more than m
beans. They want to know that how many ways there are to save no more
than m beans (they are the same) in n trees.

Now they turn to you
for help, you should give them the answer. The result may be extremely
huge; you should output the result modulo p, because squirrels can’t
recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.

Then
followed T lines, each line contains three integers n, m, p, means that
squirrels will save no more than m same beans in n different trees, 1
<= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to
be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 思路:隔板法+lucas定理;
 题意:在n个树上放小于m个苹果有多少种方案;
 首先我们先考虑放m个苹果在n棵树上有多少种方案,问题转化为求x1+x2+...xn=m的方案数。
 这个就可以用隔板法来求,那么就是C(n+m-1,n-1)=C(n+m-1,m);
 那么答案就是C(n-1,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);
 根据杨辉三角上式等于C(n,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);逐项两两合并就可以得到C(n+m,m);
 那么由于primep比较小,并且n+m比较大,所以用lucas定理去求;

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 LL quick(LL n,LL m,LL mod);
12 LL lucas(LL n,LL m,LL mod);
13 LL a[100005];
14 int main(void)
15 {
16 int i,j,k;
17 LL x,y,z;
18 scanf("%d",&k);
19 while(k--)
20 {
21 scanf("%lld %lld %lld",&x,&y,&z);
22 a[0]=1;
23 a[1]=1;
24 for(i=2; i<=z; i++)
25 {
26 a[i]=a[i-1]*i;
27 a[i]%=z;
28 }
29 LL n=(x+y);
30 LL m=x;
31 LL ask=lucas(m,n,z);
32 printf("%lld\n",ask%z);
33 }
34 return 0;
35 }
36 LL quick(LL n,LL m,LL mod)
37 {
38 LL ans=1;
39 while(m)
40 {
41 if(m&1)
42 {
43 ans=ans*n%mod;
44 }
45 n=n*n%mod;
46 m/=2;
47 }
48 return ans;
49 }
50 LL lucas(LL n,LL m,LL mod)
51 {
52 if(n==0)
53 {
54 return 1;
55 }
56 else
57 {
58 LL x1=n/mod;
59 LL x2=m/mod;
60 LL t1=n%mod;
61 LL t2=m%mod;
62 LL t3=a[t2-t1]*a[t1]%mod;
63 if(t2<t1)return 0;
64 LL nit3=quick(t3,mod-2,mod);
65 return (nit3*a[t2]%mod*lucas(x1,x2,mod)%mod)%mod;
66 }
67 }

Saving Beans(hud3037)的更多相关文章

  1. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. HDOJ 3037 Saving Beans

    如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...

  5. hdu3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pro ...

  6. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  8. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 9. Delete Node in a Linked List

    Write a function to delete a node (except the tail) in a singly linked list, given only access to th ...

  2. bluetooth sig bluetooth asia-深圳之行

    18年5月30日深圳参见蓝牙展会 主要了解下面 使用蓝牙和区块链构建室内导航定位系统和去中心化的MESH网络 -- 核心是通过iBeacon 来广播数据,典型用例是手机对手机的使用蓝牙进行交互,业界称 ...

  3. SpringBoot整合Shiro 三:整合Mybatis

    搭建环境见: SpringBoot整合Shiro 一:搭建环境 shiro配置类见: SpringBoot整合Shiro 二:Shiro配置类 整合Mybatis 添加Maven依赖 mysql.dr ...

  4. 用前端表格技术构建医疗SaaS 解决方案

    电子健康档案(Electronic Health Records, EHR)是将患者在所有医疗机构产生的数据(病历.心电图.医疗影像等)以电子化的方式存储,通过在不同的医疗机构之间共享,让患者面对不同 ...

  5. javaAPI2

    ---------------------------------------------------------------------------------------------------- ...

  6. 通信协议 HTTP TCP UDP

    TCP   HTTP   UDP: 都是通信协议,也就是通信时所遵守的规则,只有双方按照这个规则"说话",对方才能理解或为之服务. TCP   HTTP   UDP三者的关系: T ...

  7. 【编程思想】【设计模式】【结构模式Structural】适配器模式adapter

    Python版 https://github.com/faif/python-patterns/blob/master/structural/adapter.py #!/usr/bin/env pyt ...

  8. 小程序的事件 bindtap bindinput

    一.bindtap事件 在wxml文件里绑定: <view class='wel-list' bindtap='TZdown'> <image src="/images/w ...

  9. 机器学习——sklearn中的API

    import matplotlib.pyplot as pltfrom sklearn.svm import SVCfrom sklearn.model_selection import Strati ...

  10. Nginx状态码和日志

    目录 一.Nginx状态返回码 二.Nginx日志统计 一.Nginx状态返回码 http返回状态码(Status-Code), 以3位数字组成 200 成功 301 永久重定向(redirect) ...