SMOOTHING (LOWPASS) SPATIAL FILTERS
Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition).
import cv2
import matplotlib.pyplot as plt
import numpy as np
FILTERS
filters实际上就是通过一些特殊的kernel \(w\) 对图片进行如下操作:
\]
其中\(w(s, t) \in \mathbb{R}^{m \times n}, m=2a+1, n = 2b+1\).
注: 注意到上面会出现\(f(-1, -1)\)之类的未定义情况, 常见的处理方式是在图片周围加padding(分别为pad a, b), 比如补0或者镜像补.
用卷积的目的是其特别的性质:
- \(f * g = g * f\);
- \(f * (g * h) = (f * g) * h\);
- \(f * (g + h) = (f * g) + (g * h)\).
注: \(f, g, h\)应当形状一致 (或者每次卷积完同样进行padding).
特别的, 如果
\]
则
\]
可以显著降低计算量.
Box Filter Kernels
即
\]
img = cv2.imread("./pics/alphabeta.png")
img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 由于是截图, 先转成灰度图
plt.imshow(img, cmap='gray')
# 或者等价地用 cv2.blur(img, (m, n))
kernels = [np.ones((i, i)) / (i * i) for i in [3, 11, 21]]
imgs_smoothed = [cv2.filter2D(img, -1, kernel) for kernel in kernels]
fig, axes = plt.subplots(2, 2)
axes[0, 0].imshow(img, cmap='gray')
axes[0, 0].set_title("raw")
axes[0, 1].imshow(imgs_smoothed[0], cmap="gray")
axes[0, 1].set_title("3x3")
axes[1, 0].imshow(imgs_smoothed[1], cmap="gray")
axes[1, 0].set_title("11x11")
axes[1, 1].imshow(imgs_smoothed[2], cmap="gray")
axes[1, 1].set_title("21x21")
plt.tight_layout()
plt.show()
Lowpass Gaussian Filter Kernels
即
\]
高斯分布的特点是绝大部分集中于\((-3\sigma, +3\sigma)\)之间, 故一般\(w\)的大小选择为\((-6\sigma, +6\sigma)\), 需要注意的是, \(\sigma\)的选择和图片的大小息息相关.
imgs_smoothed = [cv2.GaussianBlur(img, ksize=ksize, sigmaX=sigma) for (ksize, sigma) in [((5, 5), 1), ((21, 21), 3.5), ((43, 43), 7)]]
fig, axes = plt.subplots(1, 4)
axes[0].imshow(img, cmap='gray')
axes[0].set_title("raw")
axes[1].imshow(imgs_smoothed[0], cmap="gray")
axes[1].set_title("5x5, 1")
axes[2].imshow(imgs_smoothed[1], cmap="gray")
axes[2].set_title("21x21, 3.5")
axes[3].imshow(imgs_smoothed[2], cmap="gray")
axes[3].set_title("43x43, 7")
plt.tight_layout()
plt.show()
Order-Statistic (Nonlinear) Filters
即\(g(x, y)\)由\((x, y)\)周围的点的一个某个顺序的值代替, 比如median.
imgs_smoothed = [cv2.medianBlur(img, ksize=ksize) for ksize in [3, 7, 15]]
fig, axes = plt.subplots(1, 4)
axes[0].imshow(img, cmap='gray')
axes[0].set_title("raw")
axes[1].imshow(imgs_smoothed[0], cmap="gray")
axes[1].set_title("3x3")
axes[2].imshow(imgs_smoothed[1], cmap="gray")
axes[2].set_title("7x7")
axes[3].imshow(imgs_smoothed[2], cmap="gray")
axes[3].set_title("15x15")
plt.tight_layout()
plt.show()
SMOOTHING (LOWPASS) SPATIAL FILTERS的更多相关文章
- SHARPENING (HIGHPASS) SPATIAL FILTERS
目录 Laplacian UNSHARP MASKING AND HIGHBOOST FILTERING First-Order Derivatives Roberts cross-gradient ...
- 【Duke-Image】Week_3 Spatial processing
Chapter_3 Intensity Transsformations and Spatial Filtering 灰度变换与空间滤波 Intensity transformation functi ...
- Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- EAC3 enhanced channel coupling
Enhanced channel coupling是一种spatial coding 技术,在传统的channel coupling的基础上添加了phase compensation, de-corr ...
- A simple test
博士生课程报告 视觉信息检索技术 博 士 生:施 智 平 指导老师:史忠植 研究员 中国科学院计算技术研究所 2005年1月 目 ...
- IIR filter design from analog filter
Analog filter和digital filter的联系: z变换与Laplace从数学上的关系为: 但这种关系在实际应用上不好实现,因此通常使用biliner transform(https: ...
- fMRI: spatial smoothing
Source: Brain voyager support Theoretical Background Spatial smoothing means that data points are av ...
- 【DIP, OpenCV】Some Kinds Of Image Smoothing Methodologies
In digital image processing(DIP), many methods are used in smoothing images in order to suppress noi ...
- Smoothing in fMRI analysis (FAQ)
Source: http://mindhive.mit.edu/node/112 1. What is smoothing? "Smoothing" is generally us ...
随机推荐
- pyqt5 改写函数
重新改写了keyPressEvent() class TextEdit(QTextEdit): def __init__(self): QtWidgets.QTextEdit.__init__(sel ...
- 【STM32】WS2812介绍、使用SPI+DMA发送数据
这篇要使用到SPI+DMA,需要了解的话,可以参考我另两篇博客 时钟:https://www.cnblogs.com/PureHeart/p/11330967.html SPI+DMA通信:https ...
- Gradle安装与配置
一.Gradle安装 1.Gradle安装 (1)先安装JDK/JRE (2)Gradle下载官网 Gradle官网 (3)解压安装包到想安装到的目录.如D:\java\gradle-5.2.1 (4 ...
- How exactly does Google AdWords work?
The key to how Google AdWords works is the Quality Score. Quality Score is generally how well an ad ...
- vue2 安装打包部署
vue2项目搭建记录 mkdir -p /opt/wks/online_pre/1006cd /opt/wks/online_pre/1006mkdir hongyun-ui /opt/code/vu ...
- Plist文件和字典转模型
模型与字典 1. 用模型取代字典的好处 使用字典的坏处 编译器没有自动提醒的功能,需要手敲 key如果写错了编译器也不会报错 2. 模型概念 概念 专门用来存放数据的对象 特点 一般继承自NSObje ...
- django搭建示例-ubantu环境
python3安装--------------------------------------------------------------------------- 最新的django依赖pyth ...
- css clip样式 属性功能及作用
clip clip 在学前端的小伙伴前,估计是很少用到的,代码中也是很少看见的,但是,样式中有这样的代码,下面让我们来讲讲他吧! 这个我也做了很久的开发没碰到过这个属性,知道我在一个项目中,有一个功能 ...
- Docker常用image
MySQL Start a mysql server instance Starting a MySQL instance is simple: docker run -itd --name mysq ...
- Spring boot 数据源配置。
配置文件 : spring boot 配置文件 有两种形式 ,一种是properties文件.一种是yml文件.案列使用properties文件. 数据源的默认配置 : spring boot 约定 ...