交互式查询⼯具Impala
Impala是什么:
Impala是Cloudera提供的⼀款开源的针对HDFS和HBASE中的PB级别数据进⾏交互式实时查询(Impala 速度快),Impala是参照⾕歌的新三篇论⽂当中的Dremel实现⽽来,其中旧三篇论⽂分别是 (BigTable,GFS,MapReduce)分别对应我们即将学的HBase和已经学过的HDFS以及MapReduce。
Impala最⼤卖点和最⼤特点就是快速,Impala中⽂翻译是⾼⻆羚⽺。
Impala优势:
之前学习的Hive以及MR适合离线批处理,但是对交互式查询的场景⽆能为⼒(要求快速响应),所以为了 解决查询速度的问题,Cloudera公司依据Google的Dremel开发了Impala,Impala抛弃了MapReduce 使⽤了类似于传统的MPP数据库技术,⼤⼤提⾼了查询的速度。
MPP是什么?
MPP (Massively Parallel Processing),就是⼤规模并⾏处理,在MPP集群中,每个节点资源都是独⽴ 享有也就是有独⽴的磁盘和内存,每个节点通过⽹络互相连接,彼此协同计算,作为整体提供数据服 务。
Impala 优势:
- Impala没有采取MapReduce作为计算引擎,MR是⾮常好的分布式并⾏计算框架,但MR引擎更多 的是⾯向批处理模式,⽽不是⾯向交互式的SQL执⾏。与 Hive相⽐:Impala把整个查询任务转为 ⼀棵执⾏计划树,⽽不是⼀连串的MR任务,在分发执⾏计划后,Impala使⽤拉取的⽅式获取上个 阶段的执⾏结果,把结果数据、按执⾏树流式传递汇集,减少的了把中间结果写⼊磁盘的步骤,再 从磁盘读取数据的开销。Impala使⽤服务的⽅式避免 每次执⾏查询都需要启动的开销,即相⽐ Hive没了MR启动时间。
- 使⽤LLVM(C++编写的编译器)产⽣运⾏代码,针对特定查询⽣成特定代码。
- 优秀的IO调度,Impala⽀持直接数据块读取和本地代码计算。
- 选择适合的数据存储格式可以得到最好的性能(Impala⽀持多种存储格式)。
- 尽可能使⽤内存,中间结果不写磁盘,及时通过⽹络以stream的⽅式传递。
Impala与Hive对⽐分析:
查询过程
- Hive:在Hive中,每个查询都有⼀个“冷启动”的常⻅问题。(map,reduce每次都要启动关闭,申 请资源,释放资源。。。)
- Impala:Impala避免了任何可能的启动开销,这是⼀种本地查询语⾔。 因为要始终处理查询,则 Impala守护程序进程总是在集群启动之后就准备就绪。守护进程在集群启动之后可以接收查询任 务并执⾏查询任务。
中间结果
- Hive:Hive通过MR引擎实现所有中间结果,中间结果需要落盘,这对降低数据处理速度有不利影 响。
- Impala:在执⾏程序之间使⽤流的⽅式传输中间结果,避免数据落盘。尽可能使⽤内存避免磁盘 开销
交互查询
- Hive:对于交互式计算,Hive不是理想的选择。
- Impala:对于交互式计算,Impala⾮常适合。(数据量级PB级)
计算引擎
- Hive:是基于批处理的Hadoop MapReduce
- Impala:更像是MPP数据库
容错
- Hive:Hive是容错的(通过MR&Yarn实现)
- Impala:Impala没有容错,由于良好的查询性能,Impala遇到错误会重新执⾏⼀次查询
查询速度
- Impala:Impala⽐Hive快3-90倍。
Impala优势总结
- 1. Impala最⼤优点就是查询速度快,在⼀定数据量下;
- 2. 速度快的原因:避免了MR引擎的弊端,采⽤了MPP数据库技术
元数据更新:
因为impala 不能自动感知 hive对元数据的更新操作。
- 更新所有元数据,⼿动执⾏invalidate metadata;
- 更新某一个表的元数据,refresh dbname.tablename
impala架构图:
如果是大表join ,impala使用hash join,使得hash 值一样的 id去往同一节点,这样不同节点可以并行执行join操作。
如果是小表,impala使用 广播 join。
group by 操作: impala 会对分组字段进行hash 分发,这样不同节点可以并行执行局部group by 操作,最终merge所有节点的结果。
jdbc连接 impala:
impala的sql语法与hive基本一样,支持大部分的hive内置函数。
impala的命令行是impala-shell
关于impala的相关配置参考word 文档。
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoopcommon -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.9.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-common --
>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-common</artifactId>
<version>2.3.7</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore
-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-metastore</artifactId>
<version>2.3.7</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-service -
->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-service</artifactId>
<version>2.3.7</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.3.7</version> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.7</version>
</dependency>
</dependencies>
package com.lagou.impala.jdbc;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class ImpalaTest {
public static void main(String[] args) throws Exception {
//定义连接impala的驱动和连接url
String driver = "org.apache.hive.jdbc.HiveDriver";
String driverUrl = "jdbc:hive2://linux122:21050/default;auth=noSasl";
//查询的sql语句
String querySql = "select * from t1";
//获取连接
Class.forName(driver);
//通过Drivermanager获取连接
final Connection connection = DriverManager.getConnection(driverUrl);
final PreparedStatement ps = connection.prepareStatement(querySql);
//执⾏查询
final ResultSet resultSet = ps.executeQuery();
//解析返回结果
//获取到每条数据的列数
final int columnCount = resultSet.getMetaData().getColumnCount();
//遍历结果集
while (resultSet.next()) {
for (int i = 1; i <= columnCount; i++) {
final String string = resultSet.getString(i);
System.out.print(string + "\t");
}
System.out.println();
}
//关闭资源
ps.close();
connection.close();
}
}
交互式查询⼯具Impala的更多相关文章
- 新型查询系统impala
这羊头很酷... Apache Impala是Apache Hadoop的开源本地分析数据库.Impala由Cloudera,MapR,Oracle和Amazon提供. 在Hadoop上进行BI风格的 ...
- ncdu 查找linux下最占空间的文件(交互式查询)
安装 wget -c https://dev.yorhel.nl/download/ncdu-1.11.tar.gz tar xzvf ncdu-1.11.tar.gz cd ncdu-1.11 ./ ...
- Hive、Spark SQL、Impala比较
Hive.Spark SQL.Impala比较 Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...
- [spark] spark 特性、简介、下载
[简介] 官网:http://spark.apache.org/ 推荐学习博客:http://dblab.xmu.edu.cn/blog/spark/ spark是一个采用Scala语言进行开发,更快 ...
- 基于Impala平台打造交互查询系统
本文来自网易云社区 原创: 蒋鸿翔 DataFunTalk 本文根据网易大数据蒋鸿翔老师DataFun Talk--"大数据从底层处理到数据驱动业务"中分享的<基于Impal ...
- Impala查询详解
Impala的定位是一种新型的MPP查询引擎,但是它又不是典型的MPP类型的SQL引擎,提到MPP数据库首先想到的可能是GreenPlum,它的每一个节点完全独立,节点直接不共享数据,节点之间的信息传 ...
- Impala的分布式查询
翻译自<Getting Started with Impala> 分布式查询 分布式查询是impala的核心.曾几何时,你需要研究并行计算,才能开始进行深奥而晦涩的操作.现在,有运行在Ha ...
- Impala与Hive的比較
1. Impala架构 Impala是Cloudera在受到Google的Dremel启示下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批 ...
- 【原创】大数据基础之Impala(1)简介、安装、使用
impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...
随机推荐
- DIV+css排版问题技巧总结---v客学院技术分享
DIV+css排版问题技巧总结 一.排版思路 1.从上到下,从左到右,从大到小. 2.首先确定排版分区,排除色块分布,然后再从简单的部分开始. 3.在某一块内将HTML部分写好 ...
- Requests方法 -- Blog流程类进行关联
1.接口封装关联 1.有些接口经常会用到比如登录的接口,这时候我们可以每个接口都封装成一个方法,如:登录.保存草稿.发帖.删帖,这四个接口就可以写成四个方法2.接口封装好了后,后面我们写用例那就直接调 ...
- 【洛谷P1281 书的复制】二分+动态规划
分析 两个做法,一个DP,一个是二分. 二分:也就是二分枚举每个人分到的东西. DP:区间DP F[I][J]表示前i本书分给j个人用的最短时间 由于每一次j的状态由比j小的状态得出,所以要先枚举j, ...
- informix数据库分页
需求描述 当查询结果返回大量数据情况下,比如报表查询.需要按一定条件排序提供分页呈现数据. INFORMIX实现方案:Informix 数据库提供了非常便捷.高效的SQL. SELECT SKIP M ...
- ajax原理及应用(十六)
前言 AJAX即"Asynchronous Javascript And XML",是指一种创建交互式网页应用的网页开发技术.AJAX 是一种用于创建快速动态网页的技术.它可以令开 ...
- vulnhub-DC:1靶机渗透记录
准备工作 在vulnhub官网下载DC:1靶机https://www.vulnhub.com/entry/dc-1,292/ 导入到vmware 打开kali准备进行渗透(ip:192.168.200 ...
- 大数据学习(20)—— Zookeeper介绍
ZooKeeper是什么 就像相声大师冯巩每次出场都说:"亲爱的观众朋友们,我想死你们啦"一样,我再强调一次,学习大数据官网很重要.Zookeeper官网看这里ZooKeeper ...
- [CTF] CTF入门指南
CTF入门指南 何为CTF ? CTF(Capture The Flag)夺旗比赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式.CTF起源于1996年DEFCON全球黑客大会 ...
- 解决 OnDropFiles 可能无响应的问题【转】
大多数程序都有接收拖放文件的功能,即是用鼠标把文件拖放到程序窗口上方,符合格式的文件就会自动被程序打开.最近自己对编写的程序增加了一个拖放文件的功能,在 Windows XP.Windows Serv ...
- appium自动化测试(5)-一些pyhon操作
1.套件的问题 将所有的测试用例加进去,会一个个执行,用于用例名字没有规范test开头的时候 def suite(): suite = unittest.TestSuite suite.addTest ...