Impala是什么:

  Impala是Cloudera提供的⼀款开源的针对HDFS和HBASE中的PB级别数据进⾏交互式实时查询(Impala 速度快),Impala是参照⾕歌的新三篇论⽂当中的Dremel实现⽽来,其中旧三篇论⽂分别是 (BigTable,GFS,MapReduce)分别对应我们即将学的HBase和已经学过的HDFS以及MapReduce。

   Impala最⼤卖点和最⼤特点就是快速,Impala中⽂翻译是⾼⻆羚⽺。

Impala优势:

  之前学习的Hive以及MR适合离线批处理,但是对交互式查询的场景⽆能为⼒(要求快速响应),所以为了 解决查询速度的问题,Cloudera公司依据Google的Dremel开发了Impala,Impala抛弃了MapReduce 使⽤了类似于传统的MPP数据库技术,⼤⼤提⾼了查询的速度。

MPP是什么?

  MPP (Massively Parallel Processing),就是⼤规模并⾏处理,在MPP集群中,每个节点资源都是独⽴ 享有也就是有独⽴的磁盘和内存,每个节点通过⽹络互相连接,彼此协同计算,作为整体提供数据服 务。

Impala 优势:

  • Impala没有采取MapReduce作为计算引擎,MR是⾮常好的分布式并⾏计算框架,但MR引擎更多 的是⾯向批处理模式,⽽不是⾯向交互式的SQL执⾏。与 Hive相⽐:Impala把整个查询任务转为 ⼀棵执⾏计划树,⽽不是⼀连串的MR任务,在分发执⾏计划后,Impala使⽤拉取的⽅式获取上个 阶段的执⾏结果,把结果数据、按执⾏树流式传递汇集,减少的了把中间结果写⼊磁盘的步骤,再 从磁盘读取数据的开销。Impala使⽤服务的⽅式避免 每次执⾏查询都需要启动的开销,即相⽐ Hive没了MR启动时间。
  • 使⽤LLVM(C++编写的编译器)产⽣运⾏代码,针对特定查询⽣成特定代码。
  • 优秀的IO调度,Impala⽀持直接数据块读取和本地代码计算。
  • 选择适合的数据存储格式可以得到最好的性能(Impala⽀持多种存储格式)。
  • 尽可能使⽤内存,中间结果不写磁盘,及时通过⽹络以stream的⽅式传递。

Impala与Hive对⽐分析:

查询过程

  • Hive:在Hive中,每个查询都有⼀个“冷启动”的常⻅问题。(map,reduce每次都要启动关闭,申 请资源,释放资源。。。)
  • Impala:Impala避免了任何可能的启动开销,这是⼀种本地查询语⾔。 因为要始终处理查询,则 Impala守护程序进程总是在集群启动之后就准备就绪。守护进程在集群启动之后可以接收查询任 务并执⾏查询任务。

中间结果

  • Hive:Hive通过MR引擎实现所有中间结果,中间结果需要落盘,这对降低数据处理速度有不利影 响。
  • Impala:在执⾏程序之间使⽤流的⽅式传输中间结果,避免数据落盘。尽可能使⽤内存避免磁盘 开销

交互查询

  • Hive:对于交互式计算,Hive不是理想的选择。
  • Impala:对于交互式计算,Impala⾮常适合。(数据量级PB级)

计算引擎

  • Hive:是基于批处理的Hadoop MapReduce
  • Impala:更像是MPP数据库

容错

  • Hive:Hive是容错的(通过MR&Yarn实现)
  • Impala:Impala没有容错,由于良好的查询性能,Impala遇到错误会重新执⾏⼀次查询

查询速度

  • Impala:Impala⽐Hive快3-90倍。

Impala优势总结

  • 1. Impala最⼤优点就是查询速度快,在⼀定数据量下;
  • 2. 速度快的原因:避免了MR引擎的弊端,采⽤了MPP数据库技术

元数据更新:

因为impala 不能自动感知 hive对元数据的更新操作。

  • 更新所有元数据,⼿动执⾏invalidate metadata;
  • 更新某一个表的元数据,refresh dbname.tablename

impala架构图:

如果是大表join ,impala使用hash join,使得hash 值一样的 id去往同一节点,这样不同节点可以并行执行join操作。

如果是小表,impala使用 广播 join。

group by 操作: impala 会对分组字段进行hash 分发,这样不同节点可以并行执行局部group by 操作,最终merge所有节点的结果。

jdbc连接 impala:

  impala的sql语法与hive基本一样,支持大部分的hive内置函数。

  impala的命令行是impala-shell

  关于impala的相关配置参考word 文档。

<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoopcommon -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.9.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-common --
>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-common</artifactId>
<version>2.3.7</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore
-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-metastore</artifactId>
<version>2.3.7</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-service -
->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-service</artifactId>
<version>2.3.7</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.3.7</version> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.7</version>
</dependency>
</dependencies>
package com.lagou.impala.jdbc;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class ImpalaTest {
public static void main(String[] args) throws Exception {
//定义连接impala的驱动和连接url
String driver = "org.apache.hive.jdbc.HiveDriver";
String driverUrl = "jdbc:hive2://linux122:21050/default;auth=noSasl";
//查询的sql语句
String querySql = "select * from t1";
//获取连接
Class.forName(driver);
//通过Drivermanager获取连接
final Connection connection = DriverManager.getConnection(driverUrl);
final PreparedStatement ps = connection.prepareStatement(querySql);
//执⾏查询
final ResultSet resultSet = ps.executeQuery();
//解析返回结果
//获取到每条数据的列数
final int columnCount = resultSet.getMetaData().getColumnCount();
//遍历结果集
while (resultSet.next()) {
for (int i = 1; i <= columnCount; i++) {
final String string = resultSet.getString(i);
System.out.print(string + "\t");
}
System.out.println();
}
//关闭资源
ps.close();
connection.close();
}
}

交互式查询⼯具Impala的更多相关文章

  1. 新型查询系统impala

    这羊头很酷... Apache Impala是Apache Hadoop的开源本地分析数据库.Impala由Cloudera,MapR,Oracle和Amazon提供. 在Hadoop上进行BI风格的 ...

  2. ncdu 查找linux下最占空间的文件(交互式查询)

    安装 wget -c https://dev.yorhel.nl/download/ncdu-1.11.tar.gz tar xzvf ncdu-1.11.tar.gz cd ncdu-1.11 ./ ...

  3. Hive、Spark SQL、Impala比较

    Hive.Spark SQL.Impala比较        Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...

  4. [spark] spark 特性、简介、下载

    [简介] 官网:http://spark.apache.org/ 推荐学习博客:http://dblab.xmu.edu.cn/blog/spark/ spark是一个采用Scala语言进行开发,更快 ...

  5. 基于Impala平台打造交互查询系统

    本文来自网易云社区 原创: 蒋鸿翔 DataFunTalk 本文根据网易大数据蒋鸿翔老师DataFun Talk--"大数据从底层处理到数据驱动业务"中分享的<基于Impal ...

  6. Impala查询详解

    Impala的定位是一种新型的MPP查询引擎,但是它又不是典型的MPP类型的SQL引擎,提到MPP数据库首先想到的可能是GreenPlum,它的每一个节点完全独立,节点直接不共享数据,节点之间的信息传 ...

  7. Impala的分布式查询

    翻译自<Getting Started with Impala> 分布式查询 分布式查询是impala的核心.曾几何时,你需要研究并行计算,才能开始进行深奥而晦涩的操作.现在,有运行在Ha ...

  8. Impala与Hive的比較

    1. Impala架构        Impala是Cloudera在受到Google的Dremel启示下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批 ...

  9. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

随机推荐

  1. [JS]闭包和词法环境

    词法环境 词法环境(lexical environment)由两个部分组成: 环境记录--一个存储所有局部变量作为其属性的对象. 对外部词法环境的引用,与外部代码相关联. 全局词法环境在脚本执行前创建 ...

  2. Jenkins 进阶篇 - 参数化构建

    我们在构建任务时经常会遇到这样的情景,一个任务配置好了以后,在后面的构建过程中,又会修改一些配置.例如,我们构建项目的代码可能是拉取指定的分支或者是Tag进行构建,又或者是在构建是需要指定特定的运行平 ...

  3. WEB安全新玩法 [10] 防范竞争条件支付漏洞

    服务器端业务逻辑,特别是涉及数据库读写时,存在着关键步骤的时序问题,如果设计或代码编写不当就可能存在竞争条件漏洞.攻击者可以利用多线程并发技术,在数据库的余额字段更新之前,同时发起多次兑换积分或购买商 ...

  4. vue.js 贡献指南(翻译)

    Vue.js Contributing Guide vue 2.x 嗨! 我很高兴你有兴趣为Vue.js做贡献. 在提交您的贡献之前,请务必花点时间阅读以下指南. 行为守则 问题报告指南 PR指南 开 ...

  5. Liferay Portal CE 反序列化命令执行漏洞(CVE-2020-7961)

    影响范围 Liferay Portal 6.1.X Liferay Portal 6.2.X Liferay Portal 7.0.X Liferay Portal 7.1.X Liferay Por ...

  6. Resnet网络详细结构(针对Cifar10)

    Resnet网络详细结构(针对Cifar10) 结构 具体结构(Pytorch) conv1 (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, ...

  7. template.js模板工具案例

    案例一 1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset=&qu ...

  8. Java 线程安全的实现方法

    概述 在软件业发展的初期,程序编写都是以算法为核心的,程序员会把数据和过程分别作为独立的部分来考虑,数据代表问题空间中的客体, 程序代码则用于处理这些数据,这种思维方式直接站在计算机的角度去抽象问题和 ...

  9. Kerberos委派攻击

    域委派 就是指将域内用户的权限委派给服务账号,使得服务账号能以用户的权限在域内展开活动. 在域中一般只有主机账号和服务账号才具有委派属性 主机账号:主机账号就是AD(活动目录)中Computers中的 ...

  10. 原生js 以ajax(post)的方式传json至php,并让php解析为数组

    如题. 比如要把一个json,如 json= {name:"John Rambo", time:"3pm"},,通过js ,传到一个php服务器 fwq.php ...