In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

Note:
The given numbers of 0s and 1s will both not exceed 100
The size of given string array won't exceed 600.
Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4 Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2 Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".

This is a 0/1 backpacking problem

The problem can be interpreted as: What's the max number of str can we pick from strs with limitation of m "0"s and n "1"s. Thus we can define dp[i][j] stands for max number of str can we pick from strs with limitation of i "0"s and j "1"s. For each str, assume it has a "0"s and b "1"s, we update the dp array iteratively and set dp[i][j] = Math.max(dp[i][j], dp[i - a][j - b] + 1). So at the end, dp[m][n] is the answer.

the optimal code refer to https://discuss.leetcode.com/topic/71417/java-iterative-dp-solution-o-mn-space/5

Time Complexity: O(kl + kmn), where k is the length of input string array and l is the average length of a string within the array.

Space Complexity: O(mn)

(My thinking: )This solution applies the 'dimension-reduction strategy', otherwise the space is O(mnk). The strategy is to reverse the scaning direction from end of the array to start.

 public class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
for (String str : strs) {
int[] cost = count(str);
for (int i=m; i>=cost[0]; i--) {
for (int j=n; j>=cost[1]; j--) {
dp[i][j] = Math.max(dp[i-cost[0]][j-cost[1]]+1, dp[i][j]);
}
}
}
return dp[m][n];
} public int[] count(String str) {
int[] count = new int[2];
for (int i=0; i<str.length(); i++) {
count[(int)(str.charAt(i)-'0')]++;
}
return count;
}
}

Leetcode: Ones and Zeroes的更多相关文章

  1. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. LeetCode Factorial Trailing Zeroes

    原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...

  3. 关于[LeetCode]Factorial Trailing Zeroes O(logn)解法的理解

    题目描述: Given an integer n, return the number of trailing zeroes in n!. 题目大意: 给定一个整数n,返回n!(n的阶乘)结果中后缀0 ...

  4. [LeetCode] Ones and Zeroes 一和零

    In the computer world, use restricted resource you have to generate maximum benefit is what we alway ...

  5. [LeetCode] Set Matrix Zeroes 矩阵赋零

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

  6. LeetCode 283. Move Zeroes (移动零)

    Given an array nums, write a function to move all 0's to the end of it while maintaining the relativ ...

  7. leetcode 283. Move Zeroes -easy

    题目链接:https://leetcode.com/problems/move-zeroes/ 题目内容: Given an array nums, write a function to move ...

  8. [leetcode]Set Matrix Zeroes @ Python

    原题地址:https://oj.leetcode.com/problems/set-matrix-zeroes/ 题意:Given a m x n matrix, if an element is 0 ...

  9. LeetCode Factorial Trailing Zeroes Python

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...

随机推荐

  1. <base>元素

    HTML <base> 元素 <base> 标签描述了基本的链接地址/链接目标,该标签作为HTML文档中所有的链接标签的默认链接: <head><base h ...

  2. C#连接Oracle数据库(直接引用dll使用)

    转载至:http://www.cnblogs.com/gguozhenqian/p/4262813.html 项目中有个功能需要从一台Oracle数据库获取数据,本以为是很简单的事情,直接将原来的Sq ...

  3. 解决Win8无法升级.NET Framework 3.5.1 提示错误0x800F0906

    搞了好久,发现了这篇文,很清晰,就引用了过来.http://www.xdowns.com/article/239/Article_3065.html 起因是windows8.1装oracle10g提示 ...

  4. MySQL时间戳相互转换

    mysql将时间戳转成常用时间格式 在mysql中,一个时间字段的存储类型是int(11),怎么转化成字符类型,比方存储为13270655222,需要转化为yyyy -mm-dd的形式. 使用 FRO ...

  5. static关键字

    static关键字 static是静态修饰符,一般修饰成员.被static修饰的成员属于类,不属于单个这个类的某个对象. 1.static关键字的特点 a:随着类的加载而加载 b:优先于对象存在 (还 ...

  6. DB Connection String

    SQL: Data Source=APGZDB04;Initial Catalog=ChinaEDI;Persist Security Info=True;User ID=edi_ac;Passwor ...

  7. 【Java】实战Java虚拟机之五“开启JIT编译”

    今天开始实战Java虚拟机之五“开启JIT编译” 总计有5个系列 实战Java虚拟机之一“堆溢出处理” 实战Java虚拟机之二“虚拟机的工作模式” 实战Java虚拟机之三“G1的新生代GC” 实战Ja ...

  8. 如何通过apk获得包名及Activiy 名称

    一.使用重签名工具Robotium

  9. [转载]ERP实施40问 60分钟外行变专家

    http://www.chinaodoo.net/thread-389-1-1.html 在多年的实践中,结合自身经验和多年的理论积累,总结出有关ERP实施的最关键的40个问题,以问答的形式,让您在最 ...

  10. linux实践之ELF文件分析

    linux实践之ELF文件分析 下面开始elf文件的分析. 我们首先编写一个简单的C代码. 编译链接生成可执行文件. 首先,查看scn15elf.o文件的详细信息. 以16进制形式查看scn15elf ...