Define on \(\mathbb{R}^d\) the normalized Gaussian measure
\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|x|^2}{2}}dx\]

Consider first the case \(d= 1\). The Taylor expansion of \(e^{-\frac{1}{2}x^2}\) at the point \(x\), with increment \(t\) is
\[e^{−\frac{1}{2}(x−t)^2}=\sum_{n=0}^{\infty}a_n t^n,\]
where
\[a_n=\frac{(−1)^n}{n!}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
This series is convergent for all real or complex values of \(x\) and \(t\), since we are dealing with an entire function. Multiply both sides by \(e^{\frac{1}{2}x^2}\) to get
\[e^{xt−\frac{t^2}{2}}=\sum_{n=0}^{\infty}\frac{1}{n!}(-1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
It is clear that the coefficient of \(t^n\) here is a polynomial in \(x\). We define the \(n\)th Hermite polynomial \(H_n\) by
\[H_n (x)=(−1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]

Then
\[e^{xt-\frac{t^2}{2}}=\sum_{n=0}^{\infty}H_n(x)t^n.\]
The functione \(e^{xt-\frac{t^2}{2}}\) is called the generating function of \((H_n)_{n=0}^{\infty}\).

Theorem 1.1. The polynomials \((H_n)_{n=0}^{\infty}\) form a complete orthogonal system in  \( L^2 (\gamma)\), and  \( ||H_n||_{L^2 (\gamma)} =\sqrt{n!}.\)

Proof. It is clear that \(H_n(x)\) is a poplynormial with degree \(n\). Let \(m\le n\). Using the definition of \(H_n\) and integrating by parts, we get, with \(D=d/dx\),
\[\begin{array}{rcl}\int H_m(x)H_n(x)d\gamma(x)&=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x) e^{\frac{x^2}{2}}\left(D^n e^{−\frac{x^2}{2}}\right)e^{\frac{-x^2}{2}}dx\\ &=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x)(D_n e^{−\frac{x^2}{2}})dx\\ &=&\sum_{n=0}^{\infty} \frac{(−1)^n}{\sqrt{2\pi}}\int (D^n H_m(x)) e^{−\frac{x^2}{2}}dx,\\ \end{array}\]
and this vanishes if \(m<n\). For \(m=n\) the same calculation yields
\[\frac{1}{\sqrt{2\pi}}\int (D_n H_n(x))e^{−\frac{x^2}{2}}dx=n!,\]
and thus \(||H_n||_{L^2 (\gamma)} =\sqrt{n!}\), as claimed.

It remains to prove the completeness. Since any polynomial can be expressed as linear combinations of Hermite polynomials, it suffices to show that the set of all polynomials is dense in \(L^2 (\gamma)\). Assume that \(f\in L^2(\gamma)\subset L^1(\gamma)\) is orthogonal to all polynomials. If \(f\) can be shown to be zero, completeness is proved. The product \(f(x)e^{−\frac{x^2}{2}}\) is in \(L^1(dx)\), so it has a well-defined Fourier transform. Calculating this Fourier transform, expanding \(e^{i\xi x}\) in a Taylor series and assuming that we can interchange the order of summation and integration, we get that
\[\int e^{i\xi x} f(x)d \gamma(x)=\sum_{n=0}^{\infty} \frac{i^n {\xi}^n}{n!} \int x^n f(x)d \gamma(x)=0,  \forall \xi \in \mathbb{R}.\]
We conclude that \(f=0\).

Finally, we must verify that the order of summation and integration in (1.2) can be switched. We shall majorize \(\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\) by an \(L^1(\gamma)\) function, uniformly in \(N\in \mathbb{N}\). But
\[\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\le\sum_{n=0}^{\infty}\frac{|\xi|^n}{n!}|x|^n |f(x)|=e^{|\xi||x|}|f(x)|,\]
and by the Cauchy-Schwarz inequality
\[\int e^{|\xi||x|}|f(x)|d\gamma(x)\le \left(\int |f(x)|^2d\gamma(x)\right)^{\frac{1}{2}}\left(\int e^{2|\xi||x|}d\gamma(x)\right)^{\frac{1}{2}}<\infty.\]

Remark.  Let \(X, Y\) be two random variables with joint Gaussian distribution such that \(E(X)=E(Y)=0,E(X^2)E(Y^2)=1\), then

\[E\left(e^{sX-\frac{s^2}{2}}e^{tY-\frac{t^2}{2}}\right)=e^{stE(XY)}.\]

Taking the \((n + m)\)th partial derivative \(\frac{\partial^{n+m}}{\partial s^n \partial t^m}\) at \(s = t = 0\) in both sides of the above equality yields the same result as theorem 1.1 claimed.

\(\S1 \) Gaussian Measure and Hermite Polynomials的更多相关文章

  1. 数值分析:Hermite多项式

    http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...

  2. Hermite曲线插值

    原文 Hermite Curve Interpolation Hermite Curve Interpolation Hamburg (Germany), the 30th March 1998. W ...

  3. \(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup

    Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2 ...

  4. [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

    随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...

  5. C++历史(The History of C++)

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  6. C++历史

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  7. UNDERSTANDING THE GAUSSIAN DISTRIBUTION

    UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...

  8. 1002. A+B for Polynomials (25)

    题目链接:https://www.patest.cn/contests/pat-a-practise/1002 原题如下: This time, you are supposed to find A+ ...

  9. S1的小成果:MyKTV系统

    转眼之间,已经到了2016年,即新的一年了!S1也结束了,收获的也不多 ,想想最后留给大家的就一个KTV项目了. 希望大家看时有所收获           现在我们一起来看KTV前台管理 主界面的运行 ...

随机推荐

  1. [刘阳Java]_MyBatis_映射文件的常用标签总结_第5讲

    MyBatis中常用标签的总结,简单给出自己的总结 MyBatis映射文件中的标签使用介绍1.<select>:用于编写查询语句用的标签 id:表示当前<select>标签的唯 ...

  2. MD5编码的内存泄露

    MD5CryptoServiceProvider 如果多次使用会产生内存溢出,如下这样调用几百万次就会出现内存 溢出. public static string MD5Encode(string so ...

  3. Spring bean的作用域和生命周期

    bean的作用域 1.singleton,prototype, web环境下:request,session,gloab session 2.通过scope="" 来进行配置 3. ...

  4. AdminLTE-2.2.0 学习

    这货基于Bootstrap 3(提供了统一的样式,覆盖了默认的),所以官方建议先搞懂Bootstrap 3再说. # 布局 Layout 布局由四个主要部分组成: Wrapper (.wrapper) ...

  5. Java 内部类摘抄

    关于Java的内部类,要说的东西实在太多,这篇博文中也无法一一具体说到,所以就挑些重点的讲.关于内部类的使用,你可能会疑问,为什么我们要使用内部类?为了回答这个问题,你需要知道一些关于内部类的重点.所 ...

  6. 深入理解Memcache原理 [转]

    1.为什么要使用memcache 由于网站的高并发读写需求,传统的关系型数据库开始出现瓶颈,例如: 1)对数据库的高并发读写: 关系型数据库本身就是个庞然大物,处理过程非常耗时(如解析SQL语句,事务 ...

  7. block的解析

    1. 操作系统中的栈和堆 我们先来看看一个由C/C++/OBJC编译的程序占用内存分布的结构: 栈区(stack):由系统自动分配,一般存放函数参数值.局部变量的值等.由编译器自动创建与释放.其操作方 ...

  8. linux下配置nginx使用service nginx start 服务

    解压出来后执行 mkdir /var/tmp/nginx/client/ -pv 接下来我们简单的为它提供一个服务脚本吧! # vim  /etc/init.d/nginx 新建文件/etc/rc.d ...

  9. 集成TBS(腾讯浏览服务)x5内核的webView

    由于公司产品需要展示html5页面,一开始我使用的是android自带webview,一些简单的页面没什么问题,但是碰到比较复杂的页面就让人无语了. 1.Android各大厂商都有自己定制的ROM,导 ...

  10. mysql注入读写文件

    mysql <5.0 读文件:load_file() sql-shell select load_file(''); d:/www/xx/index.php /home/webroot/.... ...