题目

Divide two integers without using multiplication, division and mod operator.

If it is overflow, return MAX_INT

链接

https://leetcode.com/problems/divide-two-integers/

答案

1、int的最大值MAX_INT为power(2,31)-1 = 2147483647

2、int的最小值MIN_INT为-power(2,31) = -2147483648

3、当MIN_INT除以-1的时候,发生溢出,因为得到的值大于MAX_INT

4、有符号数的最高位为1时,表示负数,所以可以使用异或运算获得商的符号

5、abs的各种版本看这里,double abs(double),long abs(long)竟然在C++中有,其实我想自己写个求绝对值方法的,不过,手抖还是搜了一下abs的原型。

6、这才是重中之重,刚开始看到题目,我不知道怎么用位运算去实现除法,先搜到答案

然后思考其中的原理,为什么可以这么做,思考之后自己才写了代码。

我的推理如下,如有问题,请指出,谢谢。下面我有^表示指数,不要跟C++中的^弄混了。

a = b * x (x为要求的商,等号应该为约等于,其实嘛,应该是a >= b * x && a < b * (x+1))

任何一个整数是可以用二进制表示的,所以x=2^m + 2^n + ...... + 2^t,其中m > n > t,m,n,t为整数。

x还可以这么表示x = 1*2^m + 0 * 2^(m-1) + 1 * 2^(m-2) + ...... + (1或0)*2^0。

事实上x还可以这么表示:

x = (2^k + 2^(k-1) + ...... + 2^0) + (2^t + 2^(t-1) + ...... + 2^0) + ...... + (2^r + 2^(r-1) + ...... + 2^0),其中k > t > ...... > r。

所以 a = b * (2^k + 2^(k-1) + ...... + 2^0) +b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0).

并且k,t,r等满足以下关系:

b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)  < b * (2^k + 2^(k-1) + ...... + 2^0) 

...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)  - b *  (2^t + 2^(t-1) + ...... + 2^0)

第一次是 a - b * (2^k + 2^(k-1) + ...... + 2^0)  = b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)

对b进行不断左移,即上式的橙色部分,而并累加位移(2^x')是x的一部分,将a不断减去不断左移后的b,即可得到等式左边的数据。

a - b * (2^k + 2^(k-1) + ...... + 2^0)  < b * (2^k + 2^(k-1) + ...... + 2^0)

即b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)

这个是必然成立的,如果不成立,则b还可以继续左移,即k的值要比当前达到的k还要大,故每次a处理后的结果会比b处理后的结果要小。

第二次是a - b * (2^k + 2^(k-1) + ...... + 2^0) - b *  (2^t + 2^(t-1) + ...... + 2^0) = ...... + b * (2^r + 2^(r-1) + ...... + 2^0)

蓝色部分为第一次的结果。

推到这里,大家应该懂了

代码

 class Solution {
public:
static const int MAX_INT = ;
static const int MIN_INT = -; int divide(int dividend, int divisor) {
if(dividend == MIN_INT && divisor == -)
{
return MAX_INT;
} long pre = abs((long)dividend);
long post = abs((long)divisor);
int index;
int rem = ; while(pre >= post)
{
long tmp = post;
for(index = ; pre >= tmp; index ++, tmp <<= )
{
pre -= tmp;
rem += ( << index);
}
} return (dividend >> ) ^ (divisor >> ) ? -rem:rem;
}
};

leetcode-【中等题】Divide Two Integers的更多相关文章

  1. 乘风破浪:LeetCode真题_029_Divide Two Integers

    乘风破浪:LeetCode真题_029_Divide Two Integers 一.前言     两个整数相除,不能使用乘法除法和取余运算.那么就只能想想移位运算和加减法运算了. 二.Divide T ...

  2. leetcode面试准备:Divide Two Integers

    leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...

  3. leetcode第28题--Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...

  4. 【一天一道LeetCode】#29. Divide Two Integers

    一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...

  5. [Leetcode][Python]29: Divide Two Integers

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...

  6. LeetCode OJ:Divide Two Integers(两数相除)

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  7. 【LeetCode】029. Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  8. 【LeetCode】29. Divide Two Integers

    题意:不用乘除求余运算,计算除法,溢出返回INT_MAX. 首先考虑边界条件,什么条件下会产生溢出?只有一种情况,即返回值为INT_MAX+1的时候. 不用乘除求余怎么做? 一.利用减法. 耗时太长, ...

  9. leetcode 中等题(2)

    50. Pow(x, n) (中等) double myPow(double x, int n) { ; unsigned long long p; ) { p = -n; x = / x; } el ...

  10. leetcode 中等题(1)

    2. Add Two Numbers(中等) /** * Definition for singly-linked list. * struct ListNode { * int val; * Lis ...

随机推荐

  1. BLOCK封装带菊花的网络请求

    #import <Foundation/Foundation.h> @class HttpRequestManager; typedef void(^httpRequestBlock) ( ...

  2. 正则表达式测试器 beta_

    说明:"言简意赅".简而从之:如题※网上已经有很多正则的测试工具了※感谢小Z推荐了一款非常好的(但是个别子匹配项多时卡顿.应该是我的表达式问题)故而花了点时间照着“抄”了一个,并配 ...

  3. Linux中MySQL的基本操作

    1. 用root用户登录mysql mysql -u root -p 2. 查看database show databases; 3. 查看table use database名 show table ...

  4. fopen中r+和w+的区别

    r+: Open for reading and writing.  The stream is positioned  at  the beginning of the file. w+:Open ...

  5. 64位系统里的IIS运行32位ODP.NET的方法

    在64位Win7里的IIS里部署使用了ODP.NET的网站,Oracle的版本是11.20.3.20.直接部署会提示错误:在64位环境里使用了32位的程序.自己折腾了两天,最后才从别人的博客里找到解决 ...

  6. (转)网上总结的 NIPS 201 参会感受

    1. http://www.machinedlearnings.com/2016/12/nips-2016-reflections.html 2. http://blog.arpitmohan.com ...

  7. Jquery cxColor 示例演示

    今天第一次自己做调色板调用,看了半天官方的例子愣是没看懂,唉,码农老矣,尚能码否? 经过对官方下载的示例一删一浏览终于弄出来了,这么简单的东西,官方的Demo逼格也太高了 上代码: <!DOCT ...

  8. ABBYY PDF Transformer+怎么标志注释

    ABBYY PDF Transformer+是一款可创建.编辑.添加注释及将PDF文件转换为其他可编辑格式的通用工具,可用来在PDF页面的任何位置添加注释(关于如何通过ABBYY PDF Transf ...

  9. 修改msde登录方式,设置sa密码为空

    md, 记不得msde怎么修改密码, 每次都要去baidu, 下了个鸟破软件,修改msde密码, 还流氓的安装了360, 写了个批处理,留在这里: net stop MSSQLSERVERreg ad ...

  10. jquery属性的操作

    HTML示例代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...