leetcode-【中等题】Divide Two Integers
题目
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT
链接
https://leetcode.com/problems/divide-two-integers/
答案
1、int的最大值MAX_INT为power(2,31)-1 = 2147483647
2、int的最小值MIN_INT为-power(2,31) = -2147483648
3、当MIN_INT除以-1的时候,发生溢出,因为得到的值大于MAX_INT
4、有符号数的最高位为1时,表示负数,所以可以使用异或运算获得商的符号
5、abs的各种版本看这里,double abs(double),long abs(long)竟然在C++中有,其实我想自己写个求绝对值方法的,不过,手抖还是搜了一下abs的原型。
6、这才是重中之重,刚开始看到题目,我不知道怎么用位运算去实现除法,先搜到答案
然后思考其中的原理,为什么可以这么做,思考之后自己才写了代码。
我的推理如下,如有问题,请指出,谢谢。下面我有^表示指数,不要跟C++中的^弄混了。
a = b * x (x为要求的商,等号应该为约等于,其实嘛,应该是a >= b * x && a < b * (x+1))
任何一个整数是可以用二进制表示的,所以x=2^m + 2^n + ...... + 2^t,其中m > n > t,m,n,t为整数。
x还可以这么表示x = 1*2^m + 0 * 2^(m-1) + 1 * 2^(m-2) + ...... + (1或0)*2^0。
事实上x还可以这么表示:
x = (2^k + 2^(k-1) + ...... + 2^0) + (2^t + 2^(t-1) + ...... + 2^0) + ...... + (2^r + 2^(r-1) + ...... + 2^0),其中k > t > ...... > r。
所以 a = b * (2^k + 2^(k-1) + ...... + 2^0) +b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0).
并且k,t,r等满足以下关系:
b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0)
第一次是 a - b * (2^k + 2^(k-1) + ...... + 2^0) = b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
对b进行不断左移,即上式的橙色部分,而并累加位移(2^x')是x的一部分,将a不断减去不断左移后的b,即可得到等式左边的数据。
a - b * (2^k + 2^(k-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
即b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
这个是必然成立的,如果不成立,则b还可以继续左移,即k的值要比当前达到的k还要大,故每次a处理后的结果会比b处理后的结果要小。
第二次是a - b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0) = ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
蓝色部分为第一次的结果。
推到这里,大家应该懂了
代码
class Solution {
public:
static const int MAX_INT = ;
static const int MIN_INT = -; int divide(int dividend, int divisor) {
if(dividend == MIN_INT && divisor == -)
{
return MAX_INT;
} long pre = abs((long)dividend);
long post = abs((long)divisor);
int index;
int rem = ; while(pre >= post)
{
long tmp = post;
for(index = ; pre >= tmp; index ++, tmp <<= )
{
pre -= tmp;
rem += ( << index);
}
} return (dividend >> ) ^ (divisor >> ) ? -rem:rem;
}
};
leetcode-【中等题】Divide Two Integers的更多相关文章
- 乘风破浪:LeetCode真题_029_Divide Two Integers
乘风破浪:LeetCode真题_029_Divide Two Integers 一.前言 两个整数相除,不能使用乘法除法和取余运算.那么就只能想想移位运算和加减法运算了. 二.Divide T ...
- leetcode面试准备:Divide Two Integers
leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...
- leetcode第28题--Divide Two Integers
Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...
- 【一天一道LeetCode】#29. Divide Two Integers
一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...
- [Leetcode][Python]29: Divide Two Integers
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...
- LeetCode OJ:Divide Two Integers(两数相除)
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【LeetCode】029. Divide Two Integers
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【LeetCode】29. Divide Two Integers
题意:不用乘除求余运算,计算除法,溢出返回INT_MAX. 首先考虑边界条件,什么条件下会产生溢出?只有一种情况,即返回值为INT_MAX+1的时候. 不用乘除求余怎么做? 一.利用减法. 耗时太长, ...
- leetcode 中等题(2)
50. Pow(x, n) (中等) double myPow(double x, int n) { ; unsigned long long p; ) { p = -n; x = / x; } el ...
- leetcode 中等题(1)
2. Add Two Numbers(中等) /** * Definition for singly-linked list. * struct ListNode { * int val; * Lis ...
随机推荐
- BLOCK封装带菊花的网络请求
#import <Foundation/Foundation.h> @class HttpRequestManager; typedef void(^httpRequestBlock) ( ...
- 正则表达式测试器 beta_
说明:"言简意赅".简而从之:如题※网上已经有很多正则的测试工具了※感谢小Z推荐了一款非常好的(但是个别子匹配项多时卡顿.应该是我的表达式问题)故而花了点时间照着“抄”了一个,并配 ...
- Linux中MySQL的基本操作
1. 用root用户登录mysql mysql -u root -p 2. 查看database show databases; 3. 查看table use database名 show table ...
- fopen中r+和w+的区别
r+: Open for reading and writing. The stream is positioned at the beginning of the file. w+:Open ...
- 64位系统里的IIS运行32位ODP.NET的方法
在64位Win7里的IIS里部署使用了ODP.NET的网站,Oracle的版本是11.20.3.20.直接部署会提示错误:在64位环境里使用了32位的程序.自己折腾了两天,最后才从别人的博客里找到解决 ...
- (转)网上总结的 NIPS 201 参会感受
1. http://www.machinedlearnings.com/2016/12/nips-2016-reflections.html 2. http://blog.arpitmohan.com ...
- Jquery cxColor 示例演示
今天第一次自己做调色板调用,看了半天官方的例子愣是没看懂,唉,码农老矣,尚能码否? 经过对官方下载的示例一删一浏览终于弄出来了,这么简单的东西,官方的Demo逼格也太高了 上代码: <!DOCT ...
- ABBYY PDF Transformer+怎么标志注释
ABBYY PDF Transformer+是一款可创建.编辑.添加注释及将PDF文件转换为其他可编辑格式的通用工具,可用来在PDF页面的任何位置添加注释(关于如何通过ABBYY PDF Transf ...
- 修改msde登录方式,设置sa密码为空
md, 记不得msde怎么修改密码, 每次都要去baidu, 下了个鸟破软件,修改msde密码, 还流氓的安装了360, 写了个批处理,留在这里: net stop MSSQLSERVERreg ad ...
- jquery属性的操作
HTML示例代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...