来源:http://www.cnblogs.com/ShaneZhang/p/4102581.html

这是一道阿里的面试题。其实算不上新鲜,但是我之前没关注过,如今碰到了,就顺便探讨下这个问题吧:)

拿到这个题,首先想到的是直接写出表达式肯定不行,所以有必要从递推入手。由特殊到一般,归纳法么~而且二叉树离不开递推这个尿性。。。

先考虑只有一个节点的情形,设此时的形态有f(1)种,那么很明显f(1)=1

如果有两个节点呢?我们很自然想到,应该在f(1)的基础上考虑递推关系。那么,如果固定一个节点后,有两种情况,一是左子树还剩一个节点,此刻类型数量为f(1),第二种情况是右子树生一个节点,此刻类型数量为f(1),固有f(2) = f(1) + f(1)

如果有三个节点呢?我们需要考虑固定两个节点的情况么?当然不行,为什么?

因为当节点数量大于等于2时,无论你如何固定,其形态必然有多种,而在这多种基础之上你如何安排后续剩下的节点呢?所以必须挑出这个误区。

回到二叉树的定义,二叉树本质上就是一个递归的形式,左子树,右子树,根节点。所以根节点应该不变,需要递归处理的是左右子树。

也就是说,还是考虑固定一个节点,即根节点。好的,按照这个思路,还剩2个节点,那么左右子树的分布情况为2=0+2=1+1=2+0。

所以有3个节点时,递归形式为f(3)=f(2) + f(1)*f(1) + f(2). (注意这里的乘法,因为左右子树一起组成整棵树,根据排列组合里面的乘法原理即可得出)

那么有n个节点呢?我们固定一个节点,那么左右子树的分布情况为n-1=n-1 + 0 = n-2 + 1 = ... = 1 + n-2 = 0 + n-1

OK。递归表达式出来了f(n) = f(n-1) + f(n-2)f(1) + f(n-3)f(2) + ... + f(1)f(n-2) + f(n-1)

观察一下这个表达式,嗯,和我们之前见过的递归表达有一点区别,递推层级为n的时候,更多的是考虑前一步(n-1),或者前两步(n-1)和(n-2)。

但是这里却考虑到所有的情况,即1到n-1。

最后说明一下,这个表达式有一个学名,叫做Catalan数。上面我们没有定义f(0)。如果把f(0)也考虑进去,显然没有节点也只有一种情况,即f(0)=1

标准表达式为f(n) = f(n-1)f(0) + f(n-2)f(1) + f(n-3)f(2) + ... + f(1)f(n-2) + f(n-1)f(0)

前几个数为1,1,2,5,14,42,132。

此外,还有一个通项公式为1/(n+1) * C(n, 2n) = C(n, 2n) - C(n-1, 2n) , n = 0,1,2,...

有兴趣的同学可以参考组合数学相关书籍,这里就不累述其证明和推导了。

N个节点的二叉树有多少种形态的更多相关文章

  1. N个节点的二叉树有多少种形态(卡特兰数)

    N个节点的二叉树有多少种形态   这是一道阿里的面试题.其实算不上新鲜,但是我之前没关注过,如今碰到了,就顺便探讨下这个问题吧:) 拿到这个题,首先想到的是直接写出表达式肯定不行,所以有必要从递推入手 ...

  2. 【2013微软面试题】输出节点数为n的二叉树的所有形态

    转自:http://blog.csdn.net/monsterxd/article/details/8449005 /* *  题意,求节点数为n的二叉树的所有形态,先要想个方式来唯一标示一棵二叉树 ...

  3. 二叉树3种递归和非递归遍历(Java)

    import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...

  4. Unique Binary Search Trees I&II——给定n有多少种BST可能、DP

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  5. n个元素的入栈顺序有多少种出栈顺序?

    问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的 ...

  6. jQuery插件开发的五种形态[转]

    这篇文章主要介绍了jQuery插件开发的五种形态小结,具体的内容就是解决javascript插件的8种特征,非常的详细. 关于jQuery插件的开发自己也做了少许研究,自己也写过多个插件,在自己的团队 ...

  7. N个数依次入栈,出栈顺序有多少种

    题目:N个数依次入栈,出栈顺序有多少种? 首先介绍一下卡特兰数:卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 2 ...

  8. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

  9. 从(0,0)到(m,n),每次走一步,只能向上或者向右走,有多少种路径走到(m,n)

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

随机推荐

  1. 在web.config配置中添加xml内容

    在web.config 中添加需要的内容时, 就是在<configuration>节点内添加一个新的<configSections>元素, 在configSections元素中 ...

  2. 关于docker容器是怎样建立新的namespace的。

    最近博客收到了一封交流的私信,感谢您的关注:现在就我理解的docker建立容器时namespace的建立问题做一个 个人的回答: 一,从原理角度来讲: docker创建container,说白了就是l ...

  3. luajava学习一

    luajava环境的搭建就不写了,网上百度,google下就ok啦. 我是在android平台下运行的项目,好了先看代码 TextView tv=(TextView)findViewById(R.id ...

  4. HTML标签整理

    第一次接触动态网站的相关代码,对程序里HTML的标签不理解.在这里会把碰到的HTML标签整理出来,持续更新. 1.<form></form>:用于声明表单,定义采集数据的范围, ...

  5. 使用Cargo实现自动化部署

    Cargo是一组帮助用户操作Web容器的工具,它能帮助用户实现自动化部署,而且它几乎支持所有的Web容器,如Tomcat.JBoss.Jetty和Glassfish.Cargo通过cargo-mave ...

  6. MongoDB初学笔记

    http://www.cnblogs.com/huangxincheng/archive/2012/02/18/2356595.html

  7. Uncaught TypeError: Cannot read property 'msie' of undefined

    因为图方便,抄了别人写的一个jquerry插件,运行时“var pos = ($.browser.msie && parseInt($.browser.version) <= 6 ...

  8. 解决Android应用安装快完毕时提示签名冲突

    最近开发了一个Android手机应用,自己用Eclipse调试安装没问题,使用其他人调试生成的bin下的apk就会出现问题,安装到最后提示"安装签名冲突"错误,想了一下估计是没有给 ...

  9. 旷世奇坑!!!spring 不能自动注入

    一入此坑,只想跳楼.我发誓应该不会有第二个人会进这种坑! 问题描述: 总是不能注入dao层,即@Resposity.always!always!always!(尝试了天下之因特网所有的注入方式,都不能 ...

  10. Hyper-V安装Oracle Linux6_4 Oracle db 12c并使用rman做异机恢复

    本文记录在Windows Server 2012 R2上安装Oracle Enterprise Linux 6.4以及使用RMAN进行进行异机恢复的过程. Windows服务器增加Hyper-V功能 ...