算法模板——Tarjan强连通分量
功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量
原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点
这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有向图可以有效的进行缩点(每个强连通分量缩成一个点),构成一个新的拓扑图(如BZOJ上Apio2009的那个ATM)(PS:注意考虑有些图中不能通过任意一个单独的点到达全部节点,所以不要以为直接tarjan(1)就了事了,还要来个for循环,不过实际上复杂度还是O(M),因为遍历过程中事实上每个边还是只会被走一次^_^)
type
point=^node;
node=record
g:longint;
next:point;
end; var
i,j,k,l,m,n,h,t,ans:longint;
ss,s:array[..] of boolean;
low,dfn,b,f:array[..] of longint;
a:array[..] of point;
p:point;
function min(x,y:longint):longint;inline;
begin
if x<y then min:=x else min:=y;
end;
function max(x,y:longint):longint;inline;
begin
if x>y then max:=x else max:=y;
end;
procedure add(x,y:longint);inline;
var p:point;
begin
new(p);
p^.g:=y;
p^.next:=a[x];
a[x]:=p;
end;
procedure tarjan(x:longint);
var i,j,k:longint;p:point;
begin
inc(h);low[x]:=h;dfn[x]:=h;
inc(t);f[t]:=x;s[x]:=true;ss[x]:=true;
p:=a[x];
while p<>nil do
begin
if not(s[p^.g]) then
begin
tarjan(p^.g);
low[x]:=min(low[x],low[p^.g]);
end
else if ss[p^.g] then low[x]:=min(low[x],dfn[P^.g]);
p:=p^.next;
end;
if low[x]=dfn[x] then
begin
inc(ans);
while f[t+]<>x do
begin
ss[f[t]]:=false;
b[f[t]]:=ans;
dec(t);
end;
end;
end;
begin
readln(n,m);
for i:= to n do a[i]:=nil;
for i:= to m do
begin
readln(j,k);
add(j,k);
end;
fillchar(s,sizeof(s),false);
fillchar(ss,sizeof(ss),false);
fillchar(f,sizeof(f),);
fillchar(low,sizeof(low),);
fillchar(dfn,sizeof(dfn),);
fillchar(b,sizeof(b),);
for i:= to n do
if s[i]=false then tarjan(i);
for i:= to n do a[i]:=nil;
for i:= to n do add(b[i],i);
for i:= to ans do
begin
p:=a[i];
write('No. ',i,' :');
while p<>nil do
begin
write(' ',p^.g);
p:=p^.next;
end;
writeln;
end;
readln;
end.
算法模板——Tarjan强连通分量的更多相关文章
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- tarjan强连通分量模板(pascal)
友好城市 [问题描述]小 w 生活在美丽的 Z 国. Z 国是一个有 n 个城市的大国, 城市之间有 m 条单向公路(连接城市 i. j 的公路只能从 i 连到 j). 城市 i. j 是友好城市当且 ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- Tarjan 强连通分量 及 双联通分量(求割点,割边)
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1) 有向图的强联通分量 (2) 无向图的双联通分量(求割点,桥) ...
- [模板] tarjan/联通分量/dfs树
//to update 边的分类 有向图边分为四类: 树边, 前向边, 返祖边(后向边), 横叉边. 上图: 判定 有向图 对图进行dfs, 不考虑已经遍历过的点, 得到dfs序 \(dfn_i\). ...
- tarjan 强连通分量
一.强连通分量定义 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly c ...
- codeforces 711 D.Directed Roads(tarjan 强连通分量 )
题目链接:http://codeforces.com/contest/711/problem/D 题目大意:Udayland有一些小镇,小镇和小镇之间连接着路,在某些区域内,如果从小镇Ai开始,找到一 ...
- 1051: [HAOI2006]受欢迎的牛 (tarjan强连通分量+缩点)
题目大意:CodeVs2822的简单版本 传送门 $Tarjan$强连通分量+缩点,若连通块的个数等于一则输出n:若缩点后图中出度为0的点个数为1,输出对应连通块内的点数:否则输出0: 代码中注释部分 ...
随机推荐
- Raphael的transform用法
Raphael的transform用法 <%@ page language="java" contentType="text/html; charset=UTF-8 ...
- Java split字符串中包含.的情况
"a.b".split(".")的语句会返回[],必须进行转义, "a.b".split("\\.")
- 汇编实现HelloWorl!
hello word~ ASSUME CS:CODE,DS:DATA DATA SEGMENT DB "HELLO WORLD" ;存储要显示的数据 DATA ENDS CODE ...
- 【python基础】之list列表
python提供了一个被称为列表的数据类型,他可以存储一个有序的元素集合. 记住:一个列表可以存储任意大小的数据集合.列表是可变对象,有别于字符串str类,str类是不可变对象. 1.创建一个列表 l ...
- 算法笔记_017:递归执行顺序的探讨(Java)
目录 1 问题描述 2 解决方案 2.1 问题化简 2.2 定位输出测试 2.3 回顾总结 1 问题描述 最近两天在思考如何使用蛮力法解决旅行商问题(此问题,说白了就是如何求解n个不同字母的所有不同排 ...
- 解决 Eclipse build workspace validation javascript 慢的问题
参考: http://blog.csdn.net/zhangzikui/article/details/24805935 http://www.cnblogs.com/wql025/p/4978351 ...
- Xamarin开发IOS系列教程一:安装黑苹果
经过一番思想挣扎和斗争之后,最终还是选择采用Xamarin来开发跨平台移动应用,好处和优点大家可以搜索其它博文,因为家里面穷加上谈了恋爱,就不买苹果了,开发阶段在Windows上面直接搞定哈,时候不早 ...
- linux文本处理常用指令总结
引子 作为一个偏爱windows的程序员,以前做文本处理的时候总是喜欢在windows下用notepad++等图形化工具处理,比如有时需要把linux服务器上一个文件进行一次全局字符串替换这样简单的操 ...
- Maven入门,Maven项目的创建,nexus 2.x搭建私服以及Maven多模块项目创建
maven的了解做一个总结,以便日后查阅, 若有不足之处,还望指出,学无止境 当然也能起到入门效果. 一,搭建maven私服 1.工具 a. Nexus 2.5.1-01 b. Maven 3.3.9 ...
- [Kafka] - Kafka基本概念介绍
Kafka官方介绍:Kafka是一个分布式的流处理平台(0.10.x版本),在kafka0.8.x版本的时候,kafka主要是作为一个分布式的.可分区的.具有副本数的日志服务系统(Kafka™ is ...