Computational Geometry Template
顿时觉得神清气爽!!
- #include <iostream>
- #include <math.h>
- #define eps 1e-8
- #define zero(x) (((x)>0?(x):-(x))<eps)
- #define pi acos(-1.0)
- struct point
- {
- double x,y;
- };
- struct line
- {
- point a,b;
- };
- struct point3
- {
- double x,y,z;
- };
- struct line3
- {
- point3 a,b;
- };
- struct plane3
- {
- point3 a,b,c;
- };
- //计算cross product (P1-P0)x(P2-P0)
- double xmult(point p1,point p2,point p0)
- {
- return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
- }
- //计算dot product (P1-P0).(P2-P0)
- double dmult(point p1,point p2,point p0)
- {
- return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
- }
- //计算cross product U . V
- point3 xmult(point3 u,point3 v)
- {
- point3 ret;
- ret.x=u.y*v.z-v.y*u.z;
- ret.y=u.z*v.x-u.x*v.z;
- ret.z=u.x*v.y-u.y*v.x;
- return ret;
- }
- //计算dot product U . V
- double dmult(point3 u,point3 v)
- {
- return u.x*v.x+u.y*v.y+u.z*v.z;
- }
- //两点距离
- double distance(point p1,point p2)
- {
- return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
- }
- //判三点共线
- bool dots_inline(point p1,point p2,point p3)
- {
- return zero(xmult(p1,p2,p3));
- }
- //判点是否在线段上,包括端点
- bool dot_online_in(point p,line l)
- {
- return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
- }
- //判点是否在线段上,不包括端点
- bool dot_online_ex(point p,line l)
- {
- return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y));
- }
- //判两点在线段同侧,点在线段上返回0
- bool same_side(point p1,point p2,line l)
- {
- return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
- }
- //判两点在线段异侧,点在线段上返回0
- bool opposite_side(point p1,point p2,line l)
- {
- return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
- }
- //判两直线平行
- bool parallel(line u,line v)
- {
- return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
- }
- //判两直线垂直
- bool perpendicular(line u,line v)
- {
- return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));
- }
- //判两线段相交,包括端点和部分重合
- bool intersect_in(line u,line v)
- {
- if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
- return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
- return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
- }
- //判两线段相交,不包括端点和部分重合
- bool intersect_ex(line u,line v)
- {
- return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
- }
- //计算两直线交点,注意事先判断直线是否平行!
- //线段交点请另外判线段相交(同时还是要判断是否平行!)
- point intersection(line u,line v)
- {
- point ret=u.a;
- double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
- /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
- ret.x+=(u.b.x-u.a.x)*t;
- ret.y+=(u.b.y-u.a.y)*t;
- return ret;
- }
- point intersection(point u1,point u2,point v1,point v2)
- {
- point ret=u1;
- double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
- /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
- ret.x+=(u2.x-u1.x)*t;
- ret.y+=(u2.y-u1.y)*t;
- return ret;
- }
- //点到直线上的最近点
- point ptoline(point p,line l)
- {
- point t=p;
- t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
- return intersection(p,t,l.a,l.b);
- }
- //点到直线距离
- double disptoline(point p,line l)
- {
- return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
- }
- //点到线段上的最近点
- point ptoseg(point p,line l)
- {
- point t=p;
- t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
- if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
- return distance(p,l.a)<distance(p,l.b)?l.a:l.b;
- return intersection(p,t,l.a,l.b);
- }
- //点到线段距离
- double disptoseg(point p,line l)
- {
- point t=p;
- t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
- if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
- return distance(p,l.a)<distance(p,l.b)?distance(p,l.a):distance(p,l.b);
- return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
- }
- //矢量V 以P 为顶点逆时针旋转angle 并放大scale 倍
- point rotate(point v,point p,double angle,double scale)
- {
- point ret=p;
- v.x-=p.x,v.y-=p.y;
- p.x=scale*cos(angle);
- p.y=scale*sin(angle);
- ret.x+=v.x*p.x-v.y*p.y;
- ret.y+=v.x*p.y+v.y*p.x;
- return ret;
- }
- //计算三角形面积,输入三顶点
- double area_triangle(point p1,point p2,point p3)
- {
- return fabs(xmult(p1,p2,p3))/2;
- }
- //计算三角形面积,输入三边长
- double area_triangle(double a,double b,double c)
- {
- double s=(a+b+c)/2;
- return sqrt(s*(s-a)*(s-b)*(s-c));
- }
- //计算多边形面积,顶点按顺时针或逆时针给出
- double area_polygon(int n,point* p)
- {
- double s1=0,s2=0;
- int i;
- for (i=0; i<n; i++)
- s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;
- return fabs(s1-s2)/2;
- }
- //计算圆心角lat 表示纬度,-90<=w<=90,lng 表示经度
- //返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
- double angle(double lng1,double lat1,double lng2,double lat2)
- {
- double dlng=fabs(lng1-lng2)*pi/180;
- while (dlng>=pi+pi)
- dlng-=pi+pi;
- if (dlng>pi)
- dlng=pi+pi-dlng;
- lat1*=pi/180,lat2*=pi/180;
- return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2));
- }
- //计算距离,r 为球半径
- double line_dist(double r,double lng1,double lat1,double lng2,double lat2)
- {
- double dlng=fabs(lng1-lng2)*pi/180;
- while (dlng>=pi+pi)
- dlng-=pi+pi;
- if (dlng>pi)
- dlng=pi+pi-dlng;
- lat1*=pi/180,lat2*=pi/180;
- return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2)));
- }
- //计算球面距离,r 为球半径
- inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2)
- {
- return r*angle(lng1,lat1,lng2,lat2);
- }
- //外心
- point circumcenter(point a,point b,point c)
- {
- line u,v;
- u.a.x=(a.x+b.x)/2;
- u.a.y=(a.y+b.y)/2;
- u.b.x=u.a.x-a.y+b.y;
- u.b.y=u.a.y+a.x-b.x;
- v.a.x=(a.x+c.x)/2;
- v.a.y=(a.y+c.y)/2;
- v.b.x=v.a.x-a.y+c.y;
- v.b.y=v.a.y+a.x-c.x;
- return intersection(u,v);
- }
- //内心
- point incenter(point a,point b,point c)
- {
- line u,v;
- double m,n;
- u.a=a;
- m=atan2(b.y-a.y,b.x-a.x);
- n=atan2(c.y-a.y,c.x-a.x);
- u.b.x=u.a.x+cos((m+n)/2);
- u.b.y=u.a.y+sin((m+n)/2);
- v.a=b;
- m=atan2(a.y-b.y,a.x-b.x);
- n=atan2(c.y-b.y,c.x-b.x);
- v.b.x=v.a.x+cos((m+n)/2);
- v.b.y=v.a.y+sin((m+n)/2);
- return intersection(u,v);
- }
- //垂心
- point perpencenter(point a,point b,point c)
- {
- line u,v;
- u.a=c;
- u.b.x=u.a.x-a.y+b.y;
- u.b.y=u.a.y+a.x-b.x;
- v.a=b;
- v.b.x=v.a.x-a.y+c.y;
- v.b.y=v.a.y+a.x-c.x;
- return intersection(u,v);
- }
- //重心
- //到三角形三顶点距离的平方和最小的点
- //三角形内到三边距离之积最大的点
- point barycenter(point a,point b,point c)
- {
- line u,v;
- u.a.x=(a.x+b.x)/2;
- u.a.y=(a.y+b.y)/2;
- u.b=c;
- v.a.x=(a.x+c.x)/2;
- v.a.y=(a.y+c.y)/2;
- v.b=b;
- return intersection(u,v);
- }
- //费马点
- //到三角形三顶点距离之和最小的点
- point fermentpoint(point a,point b,point c)
- {
- point u,v;
- double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y);
- int i,j,k;
- u.x=(a.x+b.x+c.x)/3;
- u.y=(a.y+b.y+c.y)/3;
- while (step>1e-10)
- {
- for (k=0; k<10; step/=2,k++)
- {
- for (i=-1; i<=1; i++)
- {
- for (j=-1; j<=1; j++)
- {
- v.x=u.x+step*i;
- v.y=u.y+step*j;
- if(distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c))
- {
- u=v;
- }
- }
- }
- }
- }
- return u;
- }
- //矢量差 U - V
- point3 subt(point3 u,point3 v)
- {
- point3 ret;
- ret.x=u.x-v.x;
- ret.y=u.y-v.y;
- ret.z=u.z-v.z;
- return ret;
- }
- //取平面法向量
- point3 pvec(plane3 s)
- {
- return xmult(subt(s.a,s.b),subt(s.b,s.c));
- }
- point3 pvec(point3 s1,point3 s2,point3 s3)
- {
- return xmult(subt(s1,s2),subt(s2,s3));
- }
- //两点距离,单参数取向量大小
- double distance(point3 p1,point3 p2)
- {
- return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
- }
- ///三维///
- //向量大小
- double vlen(point3 p)
- {
- return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
- }
- //判三点共线
- bool dots_inline(point3 p1,point3 p2,point3 p3)
- {
- return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;
- }
- //判四点共面
- bool dots_onplane(point3 a,point3 b,point3 c,point3 d)
- {
- return zero(dmult(pvec(a,b,c),subt(d,a)));
- }
- //判点是否在线段上,包括端点和共线
- bool dot_online_in(point3 p,line3 l)
- {
- return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;
- }
- //判点是否在线段上,不包括端点
- bool dot_online_ex(point3 p,line3 l)
- {
- return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
- }
- //判点是否在空间三角形上,包括边界,三点共线无意义
- bool dot_inplane_in(point3 p,plane3 s)
- {
- return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
- }
- //判点是否在空间三角形上,不包括边界,三点共线无意义
- bool dot_inplane_ex(point3 p,plane3 s)
- {
- return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps;
- }
- //判两点在线段同侧,点在线段上返回0,不共面无意义
- bool same_side(point3 p1,point3 p2,line3 l)
- {
- return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
- }
- //判两点在线段异侧,点在线段上返回0,不共面无意义
- bool opposite_side(point3 p1,point3 p2,line3 l)
- {
- return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;
- }
- //判两点在平面同侧,点在平面上返回0
- bool same_side(point3 p1,point3 p2,plane3 s)
- {
- return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
- }
- bool same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3)
- {
- return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
- }
- //判两点在平面异侧,点在平面上返回0
- bool opposite_side(point3 p1,point3 p2,plane3 s)
- {
- return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
- }
- bool opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3)
- {
- return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
- }
- //判两直线平行
- bool parallel(line3 u,line3 v)
- {
- return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;
- }
- //判两平面平行
- bool parallel(plane3 u,plane3 v)
- {
- return vlen(xmult(pvec(u),pvec(v)))<eps;
- }
- //判直线与平面平行
- bool parallel(line3 l,plane3 s)
- {
- return zero(dmult(subt(l.a,l.b),pvec(s)));
- }
- bool parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3)
- {
- return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));
- }
- //判两直线垂直
- bool perpendicular(line3 u,line3 v)
- {
- return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
- }
- //判两平面垂直
- bool perpendicular(plane3 u,plane3 v)
- {
- return zero(dmult(pvec(u),pvec(v)));
- }
- //判直线与平面平行
- bool perpendicular(line3 l,plane3 s)
- {
- return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
- }
- //判两线段相交,包括端点和部分重合
- bool intersect_in(line3 u,line3 v)
- {
- if (!dots_onplane(u.a,u.b,v.a,v.b))
- return 0;
- if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
- return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
- return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
- }
- //判两线段相交,不包括端点和部分重合
- bool intersect_ex(line3 u,line3 v)
- {
- return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
- }
- //判线段与空间三角形相交,包括交于边界和(部分)包含
- bool intersect_in(line3 l,plane3 s)
- {
- return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&!same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
- }
- //判线段与空间三角形相交,不包括交于边界和(部分)包含
- bool intersect_ex(line3 l,plane3 s)
- {
- return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
- }
- //计算两直线交点,注意事先判断直线是否共面和平行!
- //线段交点请另外判线段相交(同时还是要判断是否平行!)
- point3 intersection(line3 u,line3 v)
- {
- point3 ret=u.a;
- double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
- /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
- ret.x+=(u.b.x-u.a.x)*t;
- ret.y+=(u.b.y-u.a.y)*t;
- ret.z+=(u.b.z-u.a.z)*t;
- return ret;
- }
- //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
- //线段和空间三角形交点请另外判断
- point3 intersection(line3 l,plane3 s)
- {
- point3 ret=pvec(s);
- double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/(ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
- ret.x=l.a.x+(l.b.x-l.a.x)*t;
- ret.y=l.a.y+(l.b.y-l.a.y)*t;
- ret.z=l.a.z+(l.b.z-l.a.z)*t;
- return ret;
- }
- point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3)
- {
- point3 ret=pvec(s1,s2,s3);
- double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
- (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z));
- ret.x=l1.x+(l2.x-l1.x)*t;
- ret.y=l1.y+(l2.y-l1.y)*t;
- ret.z=l1.z+(l2.z-l1.z)*t;
- return ret;
- }
- //计算两平面交线,注意事先判断是否平行,并保证三点不共线!
- line3 intersection(plane3 u,plane3 v)
- {
- line3 ret;
- ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u.c);
- ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u.c);
- return ret;
- }
- line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3)
- {
- line3 ret;
- ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3);
- ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3);
- return ret;
- }
- //点到直线距离
- double ptoline(point3 p,line3 l)
- {
- return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
- }
- //点到平面距离
- double ptoplane(point3 p,plane3 s)
- {
- return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
- }
- //直线到直线距离
- double linetoline(line3 u,line3 v)
- {
- point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
- return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
- }
- //两直线夹角cos 值
- double angle_cos(line3 u,line3 v)
- {
- return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
- }
- //两平面夹角cos 值
- double angle_cos(plane3 u,plane3 v)
- {
- return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
- }
- //直线平面夹角sin 值
- double angle_sin(line3 l,plane3 s)
- {
- return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
- }
- int main()
- {
- return 0;
- }
Computational Geometry Template的更多相关文章
- Computational Geometry Template_Polygon
#include <stdlib.h> #include <math.h> #include <iostream> #define MAXN 1000 #defin ...
- Computational Geometry
矩形重叠 看过某司一道笔试题:给\(n\)个矩形左下和右上坐标(不能斜放),求重叠最多处矩形个数. 这道题本身不难:可以遍历所有矩形边界组成的点,计算该点被多少矩形包围,从而选出最大值. 由此引申出一 ...
- 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- boost库之geometry<二>
#include <boost/assign.hpp> #include <boost/geometry/core/point_type.hpp> #include <b ...
- c++程序员必知的几个库
c++程序员必知的几个库 1.C++各大有名库的介绍——C++标准库 2.C++各大有名库的介绍——准标准库Boost 3.C++各大有名库的介绍——GUI 4.C++各大有名库的介绍——网络通信 5 ...
- Java基础常见英语词汇
Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的 ['prəʊɡræmɪŋ]编程 OO: object ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
- c++资源之不完全导引 (转)
c++资源之不完全导引 (转) 转:http://www.cnblogs.com/suiyingjie/archive/2008/02/24/1079411.html 本文2004年5月首发于< ...
随机推荐
- iOS- 三步快速集成社交化分享工具ShareSDK
http://www.cnblogs.com/qingche/p/3727559.html 1.前言 作为现在App里必不可少的用户分享需要,社交化分享显然是我们开发app里较为常用的. 最近因为公司 ...
- docker学习笔记15:Dockerfile 指令 USER介绍
USER指令用于指定容器执行程序的用户身份,默认是 root用户. 在docker run 中可以通过 -u 选项来覆盖USER指令的设置. 举例:docker run -i -t -u mysql ...
- Spirng+SpringMVC+Maven+Mybatis+MySQL项目搭建(转)
这篇文章主要讲解使用eclipse对Spirng+SpringMVC+Maven+Mybatis+MySQL项目搭建过程,包括里面步骤和里面的配置文件如何配置等等都会详细说明. 如果还没有搭建好环境( ...
- shu_1548 悟空问题(大哥,主妖怪抓走的朋友!)
http://202.121.199.212/JudgeOnline/problem.php?cid=1078&pid=17 分析: 直接暴力了.. . 代码: #include <s ...
- 2008r2 做windows域控制器
新配一个: 1.装DNS服务. 2.装domain管理. config domain: 客户端172.16.1.34 ping zyctest
- lua 安装配置
LUA用纯C语言编写 1.相关安装配置 Last login: Thu Jul 9 08:42:02 on console nixinshengdeMacBook-Pro:~ nixinsheng$ ...
- db link 连接不上
两边的数据库,不在一个地方.都是oracle. 试了很多次,有时提示连接拒绝,有时连接不上.后来改了dblink的创建脚本,如下,才成功了. -- Create database link creat ...
- 分享非常有用的Java程序(关键代码)(八)---Java InputStream读取网络响应Response数据的方法!(重要)
原文:分享非常有用的Java程序(关键代码)(八)---Java InputStream读取网络响应Response数据的方法!(重要) Java InputStream读取数据问题 ======== ...
- JAVA类(上)
package test; public class staticAccess { public int age; public staticAccess grow() { age++; return ...
- JPA相关知识点滴--持续更新中.....
Java 持久化(JPA) •Java EE 5 在EJB 3.0 中包含JPA 1.0 •参考实现:TopLink Essentials •Java EE 6 包含JPA 2.0 •参考实现:Ec ...