顿时觉得神清气爽!!

  1. #include <iostream>
  2. #include <math.h>
  3.  
  4. #define eps 1e-8
  5. #define zero(x) (((x)>0?(x):-(x))<eps)
  6.  
  7. #define pi acos(-1.0)
  8.  
  9. struct point
  10. {
  11. double x,y;
  12. };
  13.  
  14. struct line
  15. {
  16. point a,b;
  17. };
  18. struct point3
  19. {
  20. double x,y,z;
  21. };
  22. struct line3
  23. {
  24. point3 a,b;
  25. };
  26. struct plane3
  27. {
  28. point3 a,b,c;
  29. };
  30.  
  31. //计算cross product (P1-P0)x(P2-P0)
  32. double xmult(point p1,point p2,point p0)
  33. {
  34. return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
  35. }
  36. //计算dot product (P1-P0).(P2-P0)
  37. double dmult(point p1,point p2,point p0)
  38. {
  39. return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
  40. }
  41. //计算cross product U . V
  42. point3 xmult(point3 u,point3 v)
  43. {
  44. point3 ret;
  45. ret.x=u.y*v.z-v.y*u.z;
  46. ret.y=u.z*v.x-u.x*v.z;
  47. ret.z=u.x*v.y-u.y*v.x;
  48. return ret;
  49. }
  50. //计算dot product U . V
  51. double dmult(point3 u,point3 v)
  52. {
  53. return u.x*v.x+u.y*v.y+u.z*v.z;
  54. }
  55.  
  56. //两点距离
  57. double distance(point p1,point p2)
  58. {
  59. return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
  60. }
  61.  
  62. //判三点共线
  63. bool dots_inline(point p1,point p2,point p3)
  64. {
  65. return zero(xmult(p1,p2,p3));
  66. }
  67.  
  68. //判点是否在线段上,包括端点
  69. bool dot_online_in(point p,line l)
  70. {
  71. return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
  72. }
  73.  
  74. //判点是否在线段上,不包括端点
  75. bool dot_online_ex(point p,line l)
  76. {
  77. return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y));
  78. }
  79.  
  80. //判两点在线段同侧,点在线段上返回0
  81. bool same_side(point p1,point p2,line l)
  82. {
  83. return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
  84. }
  85.  
  86. //判两点在线段异侧,点在线段上返回0
  87. bool opposite_side(point p1,point p2,line l)
  88. {
  89. return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
  90. }
  91.  
  92. //判两直线平行
  93. bool parallel(line u,line v)
  94. {
  95. return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
  96. }
  97.  
  98. //判两直线垂直
  99. bool perpendicular(line u,line v)
  100. {
  101. return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));
  102. }
  103.  
  104. //判两线段相交,包括端点和部分重合
  105. bool intersect_in(line u,line v)
  106. {
  107. if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
  108. return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
  109. return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
  110. }
  111.  
  112. //判两线段相交,不包括端点和部分重合
  113. bool intersect_ex(line u,line v)
  114. {
  115. return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
  116. }
  117.  
  118. //计算两直线交点,注意事先判断直线是否平行!
  119. //线段交点请另外判线段相交(同时还是要判断是否平行!)
  120. point intersection(line u,line v)
  121. {
  122. point ret=u.a;
  123. double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
  124. /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
  125. ret.x+=(u.b.x-u.a.x)*t;
  126. ret.y+=(u.b.y-u.a.y)*t;
  127. return ret;
  128. }
  129. point intersection(point u1,point u2,point v1,point v2)
  130. {
  131. point ret=u1;
  132. double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
  133. /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
  134. ret.x+=(u2.x-u1.x)*t;
  135. ret.y+=(u2.y-u1.y)*t;
  136. return ret;
  137. }
  138. //点到直线上的最近点
  139. point ptoline(point p,line l)
  140. {
  141. point t=p;
  142. t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
  143. return intersection(p,t,l.a,l.b);
  144. }
  145.  
  146. //点到直线距离
  147. double disptoline(point p,line l)
  148. {
  149. return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
  150. }
  151.  
  152. //点到线段上的最近点
  153. point ptoseg(point p,line l)
  154. {
  155. point t=p;
  156. t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
  157. if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
  158. return distance(p,l.a)<distance(p,l.b)?l.a:l.b;
  159. return intersection(p,t,l.a,l.b);
  160. }
  161.  
  162. //点到线段距离
  163. double disptoseg(point p,line l)
  164. {
  165. point t=p;
  166. t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
  167. if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
  168. return distance(p,l.a)<distance(p,l.b)?distance(p,l.a):distance(p,l.b);
  169. return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
  170. }
  171.  
  172. //矢量V 以P 为顶点逆时针旋转angle 并放大scale 倍
  173. point rotate(point v,point p,double angle,double scale)
  174. {
  175. point ret=p;
  176. v.x-=p.x,v.y-=p.y;
  177. p.x=scale*cos(angle);
  178. p.y=scale*sin(angle);
  179. ret.x+=v.x*p.x-v.y*p.y;
  180. ret.y+=v.x*p.y+v.y*p.x;
  181. return ret;
  182. }
  183. //计算三角形面积,输入三顶点
  184. double area_triangle(point p1,point p2,point p3)
  185. {
  186. return fabs(xmult(p1,p2,p3))/2;
  187. }
  188.  
  189. //计算三角形面积,输入三边长
  190. double area_triangle(double a,double b,double c)
  191. {
  192. double s=(a+b+c)/2;
  193. return sqrt(s*(s-a)*(s-b)*(s-c));
  194. }
  195. //计算多边形面积,顶点按顺时针或逆时针给出
  196. double area_polygon(int n,point* p)
  197. {
  198. double s1=0,s2=0;
  199. int i;
  200. for (i=0; i<n; i++)
  201. s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;
  202. return fabs(s1-s2)/2;
  203. }
  204.  
  205. //计算圆心角lat 表示纬度,-90<=w<=90,lng 表示经度
  206. //返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
  207. double angle(double lng1,double lat1,double lng2,double lat2)
  208. {
  209. double dlng=fabs(lng1-lng2)*pi/180;
  210. while (dlng>=pi+pi)
  211. dlng-=pi+pi;
  212. if (dlng>pi)
  213. dlng=pi+pi-dlng;
  214. lat1*=pi/180,lat2*=pi/180;
  215. return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2));
  216. }
  217. //计算距离,r 为球半径
  218. double line_dist(double r,double lng1,double lat1,double lng2,double lat2)
  219. {
  220. double dlng=fabs(lng1-lng2)*pi/180;
  221. while (dlng>=pi+pi)
  222. dlng-=pi+pi;
  223. if (dlng>pi)
  224. dlng=pi+pi-dlng;
  225. lat1*=pi/180,lat2*=pi/180;
  226. return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2)));
  227. }
  228. //计算球面距离,r 为球半径
  229. inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2)
  230. {
  231. return r*angle(lng1,lat1,lng2,lat2);
  232. }
  233. //外心
  234. point circumcenter(point a,point b,point c)
  235. {
  236. line u,v;
  237. u.a.x=(a.x+b.x)/2;
  238. u.a.y=(a.y+b.y)/2;
  239. u.b.x=u.a.x-a.y+b.y;
  240. u.b.y=u.a.y+a.x-b.x;
  241. v.a.x=(a.x+c.x)/2;
  242. v.a.y=(a.y+c.y)/2;
  243. v.b.x=v.a.x-a.y+c.y;
  244. v.b.y=v.a.y+a.x-c.x;
  245. return intersection(u,v);
  246. }
  247. //内心
  248. point incenter(point a,point b,point c)
  249. {
  250. line u,v;
  251. double m,n;
  252. u.a=a;
  253. m=atan2(b.y-a.y,b.x-a.x);
  254. n=atan2(c.y-a.y,c.x-a.x);
  255. u.b.x=u.a.x+cos((m+n)/2);
  256. u.b.y=u.a.y+sin((m+n)/2);
  257. v.a=b;
  258. m=atan2(a.y-b.y,a.x-b.x);
  259. n=atan2(c.y-b.y,c.x-b.x);
  260. v.b.x=v.a.x+cos((m+n)/2);
  261. v.b.y=v.a.y+sin((m+n)/2);
  262. return intersection(u,v);
  263. }
  264. //垂心
  265. point perpencenter(point a,point b,point c)
  266. {
  267. line u,v;
  268. u.a=c;
  269. u.b.x=u.a.x-a.y+b.y;
  270. u.b.y=u.a.y+a.x-b.x;
  271. v.a=b;
  272. v.b.x=v.a.x-a.y+c.y;
  273. v.b.y=v.a.y+a.x-c.x;
  274. return intersection(u,v);
  275. }
  276. //重心
  277. //到三角形三顶点距离的平方和最小的点
  278. //三角形内到三边距离之积最大的点
  279. point barycenter(point a,point b,point c)
  280. {
  281. line u,v;
  282. u.a.x=(a.x+b.x)/2;
  283. u.a.y=(a.y+b.y)/2;
  284. u.b=c;
  285. v.a.x=(a.x+c.x)/2;
  286. v.a.y=(a.y+c.y)/2;
  287. v.b=b;
  288. return intersection(u,v);
  289. }
  290. //费马点
  291. //到三角形三顶点距离之和最小的点
  292. point fermentpoint(point a,point b,point c)
  293. {
  294. point u,v;
  295. double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y);
  296. int i,j,k;
  297. u.x=(a.x+b.x+c.x)/3;
  298. u.y=(a.y+b.y+c.y)/3;
  299. while (step>1e-10)
  300. {
  301. for (k=0; k<10; step/=2,k++)
  302. {
  303. for (i=-1; i<=1; i++)
  304. {
  305. for (j=-1; j<=1; j++)
  306. {
  307. v.x=u.x+step*i;
  308. v.y=u.y+step*j;
  309. if(distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c))
  310. {
  311. u=v;
  312. }
  313. }
  314. }
  315. }
  316. }
  317. return u;
  318. }
  319.  
  320. //矢量差 U - V
  321. point3 subt(point3 u,point3 v)
  322. {
  323. point3 ret;
  324. ret.x=u.x-v.x;
  325. ret.y=u.y-v.y;
  326. ret.z=u.z-v.z;
  327. return ret;
  328. }
  329. //取平面法向量
  330. point3 pvec(plane3 s)
  331. {
  332. return xmult(subt(s.a,s.b),subt(s.b,s.c));
  333. }
  334. point3 pvec(point3 s1,point3 s2,point3 s3)
  335. {
  336. return xmult(subt(s1,s2),subt(s2,s3));
  337. }
  338. //两点距离,单参数取向量大小
  339. double distance(point3 p1,point3 p2)
  340. {
  341. return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
  342. }
  343.  
  344. ///三维///
  345. //向量大小
  346. double vlen(point3 p)
  347. {
  348. return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
  349. }
  350.  
  351. //判三点共线
  352. bool dots_inline(point3 p1,point3 p2,point3 p3)
  353. {
  354. return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;
  355. }
  356.  
  357. //判四点共面
  358. bool dots_onplane(point3 a,point3 b,point3 c,point3 d)
  359. {
  360. return zero(dmult(pvec(a,b,c),subt(d,a)));
  361. }
  362.  
  363. //判点是否在线段上,包括端点和共线
  364. bool dot_online_in(point3 p,line3 l)
  365. {
  366. return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;
  367. }
  368.  
  369. //判点是否在线段上,不包括端点
  370. bool dot_online_ex(point3 p,line3 l)
  371. {
  372. return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
  373. }
  374.  
  375. //判点是否在空间三角形上,包括边界,三点共线无意义
  376. bool dot_inplane_in(point3 p,plane3 s)
  377. {
  378. return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
  379. }
  380.  
  381. //判点是否在空间三角形上,不包括边界,三点共线无意义
  382. bool dot_inplane_ex(point3 p,plane3 s)
  383. {
  384. return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps;
  385. }
  386.  
  387. //判两点在线段同侧,点在线段上返回0,不共面无意义
  388. bool same_side(point3 p1,point3 p2,line3 l)
  389. {
  390. return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
  391. }
  392.  
  393. //判两点在线段异侧,点在线段上返回0,不共面无意义
  394. bool opposite_side(point3 p1,point3 p2,line3 l)
  395. {
  396. return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;
  397. }
  398.  
  399. //判两点在平面同侧,点在平面上返回0
  400. bool same_side(point3 p1,point3 p2,plane3 s)
  401. {
  402. return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
  403. }
  404.  
  405. bool same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3)
  406. {
  407. return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
  408. }
  409.  
  410. //判两点在平面异侧,点在平面上返回0
  411. bool opposite_side(point3 p1,point3 p2,plane3 s)
  412. {
  413. return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
  414. }
  415. bool opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3)
  416. {
  417. return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
  418. }
  419. //判两直线平行
  420. bool parallel(line3 u,line3 v)
  421. {
  422. return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;
  423. }
  424.  
  425. //判两平面平行
  426. bool parallel(plane3 u,plane3 v)
  427. {
  428. return vlen(xmult(pvec(u),pvec(v)))<eps;
  429. }
  430.  
  431. //判直线与平面平行
  432. bool parallel(line3 l,plane3 s)
  433. {
  434. return zero(dmult(subt(l.a,l.b),pvec(s)));
  435. }
  436. bool parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3)
  437. {
  438. return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));
  439. }
  440.  
  441. //判两直线垂直
  442. bool perpendicular(line3 u,line3 v)
  443. {
  444. return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
  445. }
  446.  
  447. //判两平面垂直
  448. bool perpendicular(plane3 u,plane3 v)
  449. {
  450. return zero(dmult(pvec(u),pvec(v)));
  451. }
  452.  
  453. //判直线与平面平行
  454. bool perpendicular(line3 l,plane3 s)
  455. {
  456. return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
  457. }
  458.  
  459. //判两线段相交,包括端点和部分重合
  460. bool intersect_in(line3 u,line3 v)
  461. {
  462. if (!dots_onplane(u.a,u.b,v.a,v.b))
  463. return 0;
  464. if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
  465. return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
  466. return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
  467. }
  468.  
  469. //判两线段相交,不包括端点和部分重合
  470. bool intersect_ex(line3 u,line3 v)
  471. {
  472. return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
  473. }
  474.  
  475. //判线段与空间三角形相交,包括交于边界和(部分)包含
  476. bool intersect_in(line3 l,plane3 s)
  477. {
  478. return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&!same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
  479. }
  480.  
  481. //判线段与空间三角形相交,不包括交于边界和(部分)包含
  482. bool intersect_ex(line3 l,plane3 s)
  483. {
  484. return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
  485. }
  486.  
  487. //计算两直线交点,注意事先判断直线是否共面和平行!
  488. //线段交点请另外判线段相交(同时还是要判断是否平行!)
  489. point3 intersection(line3 u,line3 v)
  490. {
  491. point3 ret=u.a;
  492. double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
  493. /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
  494. ret.x+=(u.b.x-u.a.x)*t;
  495. ret.y+=(u.b.y-u.a.y)*t;
  496. ret.z+=(u.b.z-u.a.z)*t;
  497. return ret;
  498. }
  499.  
  500. //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
  501. //线段和空间三角形交点请另外判断
  502. point3 intersection(line3 l,plane3 s)
  503. {
  504. point3 ret=pvec(s);
  505. double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/(ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
  506. ret.x=l.a.x+(l.b.x-l.a.x)*t;
  507. ret.y=l.a.y+(l.b.y-l.a.y)*t;
  508. ret.z=l.a.z+(l.b.z-l.a.z)*t;
  509. return ret;
  510. }
  511. point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3)
  512. {
  513. point3 ret=pvec(s1,s2,s3);
  514. double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
  515. (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z));
  516. ret.x=l1.x+(l2.x-l1.x)*t;
  517. ret.y=l1.y+(l2.y-l1.y)*t;
  518. ret.z=l1.z+(l2.z-l1.z)*t;
  519. return ret;
  520. }
  521.  
  522. //计算两平面交线,注意事先判断是否平行,并保证三点不共线!
  523. line3 intersection(plane3 u,plane3 v)
  524. {
  525. line3 ret;
  526. ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u.c);
  527. ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u.c);
  528. return ret;
  529. }
  530. line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3)
  531. {
  532. line3 ret;
  533. ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3);
  534. ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3);
  535. return ret;
  536. }
  537. //点到直线距离
  538. double ptoline(point3 p,line3 l)
  539. {
  540. return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
  541. }
  542.  
  543. //点到平面距离
  544. double ptoplane(point3 p,plane3 s)
  545. {
  546. return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
  547. }
  548.  
  549. //直线到直线距离
  550. double linetoline(line3 u,line3 v)
  551. {
  552. point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
  553. return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
  554. }
  555.  
  556. //两直线夹角cos 值
  557. double angle_cos(line3 u,line3 v)
  558. {
  559. return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
  560. }
  561.  
  562. //两平面夹角cos 值
  563. double angle_cos(plane3 u,plane3 v)
  564. {
  565. return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
  566. }
  567.  
  568. //直线平面夹角sin 值
  569. double angle_sin(line3 l,plane3 s)
  570. {
  571. return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
  572. }
  573.  
  574. int main()
  575. {
  576. return 0;
  577. }

Computational Geometry Template的更多相关文章

  1. Computational Geometry Template_Polygon

    #include <stdlib.h> #include <math.h> #include <iostream> #define MAXN 1000 #defin ...

  2. Computational Geometry

    矩形重叠 看过某司一道笔试题:给\(n\)个矩形左下和右上坐标(不能斜放),求重叠最多处矩形个数. 这道题本身不难:可以遍历所有矩形边界组成的点,计算该点被多少矩形包围,从而选出最大值. 由此引申出一 ...

  3. 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...

  4. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  5. boost库之geometry<二>

    #include <boost/assign.hpp> #include <boost/geometry/core/point_type.hpp> #include <b ...

  6. c++程序员必知的几个库

    c++程序员必知的几个库 1.C++各大有名库的介绍——C++标准库 2.C++各大有名库的介绍——准标准库Boost 3.C++各大有名库的介绍——GUI 4.C++各大有名库的介绍——网络通信 5 ...

  7. Java基础常见英语词汇

    Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的                             ['prəʊɡræmɪŋ]编程 OO: object ...

  8. Computer Graphics Research Software

    Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...

  9. c++资源之不完全导引 (转)

    c++资源之不完全导引 (转) 转:http://www.cnblogs.com/suiyingjie/archive/2008/02/24/1079411.html 本文2004年5月首发于< ...

随机推荐

  1. iOS- 三步快速集成社交化分享工具ShareSDK

    http://www.cnblogs.com/qingche/p/3727559.html 1.前言 作为现在App里必不可少的用户分享需要,社交化分享显然是我们开发app里较为常用的. 最近因为公司 ...

  2. docker学习笔记15:Dockerfile 指令 USER介绍

    USER指令用于指定容器执行程序的用户身份,默认是 root用户. 在docker run 中可以通过 -u 选项来覆盖USER指令的设置. 举例:docker run -i -t -u mysql ...

  3. Spirng+SpringMVC+Maven+Mybatis+MySQL项目搭建(转)

    这篇文章主要讲解使用eclipse对Spirng+SpringMVC+Maven+Mybatis+MySQL项目搭建过程,包括里面步骤和里面的配置文件如何配置等等都会详细说明. 如果还没有搭建好环境( ...

  4. shu_1548 悟空问题(大哥,主妖怪抓走的朋友!)

    http://202.121.199.212/JudgeOnline/problem.php?cid=1078&pid=17 分析:  直接暴力了.. . 代码: #include <s ...

  5. 2008r2 做windows域控制器

    新配一个: 1.装DNS服务. 2.装domain管理. config domain: 客户端172.16.1.34  ping zyctest

  6. lua 安装配置

    LUA用纯C语言编写 1.相关安装配置 Last login: Thu Jul  9 08:42:02 on console nixinshengdeMacBook-Pro:~ nixinsheng$ ...

  7. db link 连接不上

    两边的数据库,不在一个地方.都是oracle. 试了很多次,有时提示连接拒绝,有时连接不上.后来改了dblink的创建脚本,如下,才成功了. -- Create database link creat ...

  8. 分享非常有用的Java程序(关键代码)(八)---Java InputStream读取网络响应Response数据的方法!(重要)

    原文:分享非常有用的Java程序(关键代码)(八)---Java InputStream读取网络响应Response数据的方法!(重要) Java InputStream读取数据问题 ======== ...

  9. JAVA类(上)

    package test; public class staticAccess { public int age; public staticAccess grow() { age++; return ...

  10. JPA相关知识点滴--持续更新中.....

    Java 持久化(JPA)  •Java EE 5 在EJB 3.0 中包含JPA 1.0 •参考实现:TopLink Essentials •Java EE 6 包含JPA 2.0 •参考实现:Ec ...