参考了http://www.cnblogs.com/chaoku/p/3748456.html?utm_source=tuicool的代码。不过他的代码细节上有点问题。主要在于对于质心的处理上,他的代码中将前面的序号也作为数据进行求距离,但是这里是不用的。
 

kmeans基本思想就是在一个点集中随机选取k个点作为初始的质心,然后在以这K个点求点集中其他点和这质心的距离,并且按照最近的原则,将这个点集分成k个类,接着在这k个类中求其质心,接着便是迭代,一直到质心不变或者SSE小于某个阈值或者达到指定的迭代次数。不过这样的Kmeans有几个缺点1 我们如何确定K值,2初始的质心选取很重要。基于此,可以用二分kmeans(似乎是叫这个),如果有时间可以写一下。

Kmeans之所以能用MapReduce是因为Kmeans中有个计算质心的过程,而这个过程可以并行计算。不过用MapReduce似乎有一个不好的地方,就是他的这个迭代过程比较蛋疼,每次需要把数据放到HDFS,然后再删除,再读取,感觉反而会消耗很多资源,不过没有验证过,仅仅是自己的瞎想。
接下来说下思路。
1map用于求点集中各个点和k个质心的距离,选择最近的质心,key是那个质心对应的序号,value是那个点
2 reduce此时接受到的数据是相同质心的点集,接着要做的是便是求质心,对于相同质心的那个点集,求各列的平均值,以此作为新的质心。
3 以上这样就是一次跌代过程。显然一次迭代是不够的。那么如何用MapReduce进行迭代呢。
我们可以写一个判断条件,就是用于比较新的质心和旧的质心距离是否为0(也可以加上是否达到迭代次数,或者小于某个阈值等)。附上代码
 while(true ){
run(centerPath,dataPath,newCenterPath,true);
System. out.println(" " );
System. out.println("The " + ++count+"th time's compution is completed");
System. out.println(" " );
if(Utils.CompareCenters(centerPath,newCenterPath)){
Utils. deleteDir(newCenterPath);
break; } }
这里的CompareCenters就是一个用于判断的条件,如果是的话就break。否则就继续run。
具体说明下过程:
 
 
PS这里主要涉及了3个技术点
1 理解kmeans
2 会使用MapReduce迭代。一开始自己写的MapReduce都是直接在main下写了,没有run方法,后来才知道可以用run来启动,job.waitForCompletion(true)这句话比较重要,当时忘记在run里面写了,结果一直出错。
3 会hadoop的文件操作,比如删除文件,写数据等。
具体附上代码
 package hadoop.MachineLearning.kmeans;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Kmeans { public static void run(String centerPath,String dataPath,String newCenterPath,boolean runReduce) throws IOException, ClassNotFoundException, InterruptedException{
Configuration conf =new Configuration(); conf.set("centerPath",centerPath);
Job job=Job.getInstance(conf,"Kmeans");
job.setJarByClass(hadoop.MachineLearning.kmeans.Kmeans.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class);
if(runReduce){
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
} FileInputFormat.addInputPath(job,new Path(dataPath));
FileOutputFormat.setOutputPath(job,new Path(newCenterPath));
System.out.println(job.waitForCompletion(true)); } public static void main(String[] args) throws Exception {
String centerPath="hdfs://10.107.8.110:9000/Kmeans_input/center_input/centers.txt";
String dataPath="hdfs://10.107.8.110:9000/Kmeans_input/data_input/data.txt";
String newCenterPath="hdfs://10.107.8.110:9000/Kmeans_output/newCenter";
int count=0; while(true){
run(centerPath,dataPath,newCenterPath,true);
System.out.println(" ");
System.out.println("The "+ ++count+"th time's compution is completed");
System.out.println(" ");
if(Utils.CompareCenters(centerPath,newCenterPath)){
Utils.deleteDir(newCenterPath);
break; } } } }
package hadoop.MachineLearning.kmeans;

import java.io.IOException;
import java.util.ArrayList; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class MyMapper extends Mapper<LongWritable, Text, IntWritable, Text> {
ArrayList<ArrayList<Double>> centerList=new ArrayList<ArrayList<Double>>(); public void setup(Context context) throws IOException{
Configuration conf=context.getConfiguration();
String centerPath=conf.get("centerPath");
centerList=Utils.GetCenterFromHDFS(centerPath,false); } public void map(LongWritable ikey, Text ivalue, Context context)
throws IOException, InterruptedException {
ArrayList<Double> point=Utils.TextToArray(ivalue);
// int size=point.size();
double distance=0.0;
double mindis=9999.0;
int index=-1; for(int i=0;i<centerList.size();i++){
double currentDistance=0;
for(int j=1;j<point.size();j++){//原文是j=0
double centerPoint = Math.abs(centerList.get(i).get(j));
double filed = Math.abs(point.get(j));
currentDistance += Math.pow((centerPoint - filed) / (centerPoint + filed), 2); }
if(currentDistance<mindis){
mindis=currentDistance;
index=i;
}
} /*
for(int i=0;i<centerList.size();i++){
distance=Utils.getDistance(centerList.get(i),point);
if(distance<mindis){
mindis=distance;
index=i+1;
}
}
*/
// String value=""; context.write(new IntWritable(index+1),ivalue); } }
package hadoop.MachineLearning.kmeans;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class MyReducer extends Reducer<IntWritable, Text, Text, Text> { public void reduce(IntWritable _key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// process values
ArrayList<ArrayList<Double>> pointList=new ArrayList<ArrayList<Double>>();
for (Text val : values) {
ArrayList<Double> point=Utils.TextToArray(val);
pointList.add(point);
}
int row=pointList.size();
int col=pointList.get(0).size();
double[] avg=new double[col];
for(int i=1;i<col;i++){//原文是i=0
double sum=0;
for(int j=0;j<row;j++){
sum+=pointList.get(j).get(i);
}
avg[i]=sum/row;
}
context.write(new Text("") , new Text(Arrays.toString(avg).replace("[", "").replace("]", "")));
} }
package hadoop.MachineLearning.kmeans;

import java.io.IOException;
import java.util.ArrayList; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.util.LineReader; public class Utils { /**
* @param args
* @throws IOException
*/
public static ArrayList<Double> TextToArray(Text text){
ArrayList<Double> centers=new ArrayList<Double>();
String[] line=text.toString().split(",");
for(int i=0;i<line.length;i++){
double center=Double.parseDouble(line[i]);
centers.add(center);
}
return centers;
} public static ArrayList<ArrayList<Double>> GetCenterFromHDFS(String centerPath,boolean isDirectory) throws IOException{
Configuration conf=new Configuration();
Path path=new Path(centerPath);
FileSystem fs=path.getFileSystem(conf); ArrayList<ArrayList<Double>> result=new ArrayList<ArrayList<Double>>(); if(isDirectory){
FileStatus[] fileStatus=fs.listStatus(path);
for(int i=0;i<fileStatus.length;i++){
if(fileStatus[i].isFile()){
result.addAll(GetCenterFromHDFS(fileStatus[i].getPath().toString(),false));
}
}
return result;
}
FSDataInputStream infs=fs.open(path);
LineReader reader=new LineReader(infs,conf);
Text line=new Text();
while(reader.readLine(line)>0){
ArrayList<Double> center=TextToArray(line);
result.add(center);
}
reader.close();
return result;
} public static void deleteDir(String deletepath) throws IOException{
Configuration conf=new Configuration();
Path path=new Path(deletepath);
FileSystem fs=path.getFileSystem(conf);
fs.delete(path,true);
} public static boolean CompareCenters(String oldPath,String newPath) throws IOException{
ArrayList<ArrayList<Double>> oldcenters=Utils.GetCenterFromHDFS(oldPath,false);
ArrayList<ArrayList<Double>> newcenters=Utils.GetCenterFromHDFS(newPath,true);
//
// System.out.println(" ");
//
// System.out.println("oldcenters's size is "+oldcenters.size());
// System.out.println("newcenters's size is "+newcenters.size());
//
// System.out.println(" ");
int row=oldcenters.size();
int col=oldcenters.get(0).size();
double distance=0.0;
for(int i=0;i<row;i++){
for(int j=1;j<col;j++){
double oldpoint=Math.abs(oldcenters.get(i).get(j));
double newpoint=Math.abs(newcenters.get(i).get(j));
distance+=Math.pow((oldpoint-newpoint)/(oldpoint+newpoint),2);
}
}
if(distance==0.0){
Utils.deleteDir(newPath);
return true;
}else{
Configuration conf = new Configuration();
Path outPath = new Path(oldPath);
FileSystem fs=outPath.getFileSystem(conf);
FSDataOutputStream overWrite=fs.create(outPath,true);
overWrite.writeChars("");
overWrite.close(); Path inPath=new Path(newPath);
FileStatus[] listFiles=fs.listStatus(inPath);
for(int i=0;i<listFiles.length;i++){
FSDataOutputStream out=fs.create(outPath);
FSDataInputStream in=fs.open(listFiles[i].getPath());
IOUtils.copyBytes(in,out,4096,true);
}
Utils.deleteDir(newPath);
}
return false;
} public static double getDistance(ArrayList<Double> point1,ArrayList<Double> point2){
double distance=0.0;
if(point1.size()!=point2.size()){
System.err.println("point size not match!!");
System.exit(1);
}else{
for(int i=0;i<point1.size();i++){
double t1=Math.abs(point1.get(i));
double t2=Math.abs(point2.get(i));
distance+=Math.pow((t1-t1)/(t1+t2),2);
}
}
return distance;
} public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
String oldpath="hdfs://10.107.8.110:9000/Kmeans_input/center_input/centers.txt";
String newpath="hdfs://10.107.8.110:9000/Kmeans_input/test";
if(Utils.CompareCenters(oldpath,newpath)){
System.out.println("equals");
}else{
System.out.println("not equals");
}
/*
ArrayList<ArrayList<Double>> centers=Utils.GetCenterFromHDFS(path,true);
for(ArrayList<Double> center:centers){
System.out.println(" ");
for(double point:center){
System.out.println(point);
}
}
*/
//String deletepath="hdfs://10.107.8.110:9000/output/";
//Utils.deleteDir(deletepath);
} }
 

Kmeans在MapReduce中的实现的更多相关文章

  1. Hadoop学习笔记—11.MapReduce中的排序和分组

    一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排 ...

  2. Hadoop学习笔记—12.MapReduce中的常见算法

    一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思 ...

  3. MapReduce中作业调度机制

    MapReduce中作业调度机制主要有3种: 1.先入先出FIFO      Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间 ...

  4. Mapreduce中的字符串编码

    Mapreduce中的字符串编码 $$$ Shuffle的执行过程,需要经过多次比较排序.如果对每一个数据的比较都需要先反序列化,对性能影响极大. RawComparator的作用就不言而喻,能够直接 ...

  5. MapReduce中一次reduce方法的调用中key的值不断变化分析及源码解析

    摘要:mapreduce中执行reduce(KEYIN key, Iterable<VALUEIN> values, Context context),调用一次reduce方法,迭代val ...

  6. Hadoop学习之路(二十三)MapReduce中的shuffle详解

    概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数 ...

  7. [MapReduce_5] MapReduce 中的 Combiner 组件应用

    0. 说明 Combiner 介绍 &&  在 MapReduce 中的应用 1. 介绍 Combiner: Map 端的 Reduce,有自己的使用场景 在相同 Key 过多的情况下 ...

  8. Hadoop案例(七)MapReduce中多表合并

    MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息 ...

  9. MapReduce中的分布式缓存使用

    MapReduce中的分布式缓存使用 @(Hadoop) 简介 DistributedCache是Hadoop为MapReduce框架提供的一种分布式缓存机制,它会将需要缓存的文件分发到各个执行任务的 ...

随机推荐

  1. POJ 1308/并查集

    题目链接 /* 判断一棵树: * 1.There is exactly one node, called the root, to which no directed edges point. * 2 ...

  2. 命令行编译swc

    compc -source-path . -include-classes com.boyaa.landlo rd.module.room.RoomMain -output a.swc -compil ...

  3. angularJS 判断

    判断语句: ng-switch on ng-switch-when ng-switch-when ng-if=”person.sex==1“ <ul> <li ng-repeat=” ...

  4. android 去掉listview之间的黑线

    方法1:listView.setDividerHeight(0);方法2:this.getListView().setDivider(null);方法3:android:divider="@ ...

  5. 链接libtorrent库时出现的问题

    在QtCreator中使用libtorrent库的时候, 项目配置中 libs项配置如下: LIBS += -liconv -ltorrent-rasterbar -lboost_system -lb ...

  6. chromium blog

    http://blog.chromium.org/

  7. HBase的Shell命令

    1.HBase提供了一个shell的终端给用户交互 2.HBase Shell的DDL操作 (1)先进入HBase的 Shell命令行,即HBASE_HOME/bin/hbase shell …… & ...

  8. 如何在Apache中配置多端口访问

    环境: Windows server 2008 R2, Apache, PHP5 步骤: 建立一个目录,里面放置一个index.php. 打开Apache\conf\httpd.conf 文件,做如下 ...

  9. 彻底搞明白find命令的-mtime参数的含义【转载】

    转自: 彻底搞明白find命令的-mtime参数的含义-goolen-ITPUB博客http://blog.itpub.net/23249684/viewspace-1156932/ 以前一直没有弄明 ...

  10. FLASH和EEPROM的最大区别

    源:http://www.cnblogs.com/bingoo/p/3551753.html FLASH和EEPROM的最大区别是FLASH按扇区操作,EEPROM则按字节操作,二者寻址方法不同,存储 ...