求最大公约数(GCD)的两种算法
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种、在处理大数时更优秀的算法——Stein
特此记载
1.欧几里得(Euclid)算法
又称辗转相除法,依据定理gcd(a,b)=gcd(b,a%b)
实现过程演示: sample:gcd(15,10)=gcd(10,5)=gcd(5,0)=5
C语言实现:
int Euclid_GCD(int a, int b)
{
return b?Euclid_GCD(b, a%b):a;
}
2.Stein 算法
一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过 64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算 128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
依据定理:
int Stein_GCD(int x, int y)
{
if (x == ) return y;
if (y == ) return x;
if (x % == && y % == )
return * Stein_GCD(x >> , y >> );
else if (x % == )
return Stein_GCD(x >> , y);
else if (y % == )
return Stein_GCD(x, y >> );
else
return Stein_GCD(min(x, y), fabs(x - y));
}
求最大公约数(GCD)的两种算法的更多相关文章
- 求逆序对常用的两种算法 ----归并排 & 树状数组
网上看了一些归并排求逆序对的文章,又看了一些树状数组的,觉得自己也写一篇试试看吧,然后本文大体也就讲个思路(没有例题),但是还是会有个程序框架的 好了下面是正文 归并排求逆序对 树状数组求逆序对 一. ...
- 求GCD(最大公约数)的两种方式
求GCD(最大公约数)的两种方式 这篇随笔讲解C++语言程序设计与应用中求GCD(最大公约数,下文使用GCD代替)的两种常用方式:更相减损法和辗转相除法,前提要求是具有小学数学的基本素养,知道GCD是 ...
- 最小生成树算法 prim kruskal两种算法实现 HDU-1863 畅通工程
最小生成树 通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小.这就是最小生成树 可以参考下图,便于理解 原来的图: 最小生成树(蓝色线): ...
- c语言求回文数的三种算法的描述
c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...
- 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)
参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...
- [算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找 ...
- 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...
- 「每日五分钟,玩转JVM」:两种算法
前言 上篇文章,我们了解了GC 的相关概念,这篇文章我们通过两个算法来了解如何去确定堆中的对象实例哪些是我们需要去回收的垃圾对象. 引用计数算法 引用计数法的原理很简单,就是在对象中维护一个计数器,当 ...
- 浅谈Stein算法求最大公约数(GCD)的原理及简单应用
一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: ...
随机推荐
- IOC(控制反转)
一.容器与Bean 在Spring中,那些组成你应用程序的主体(backbone)及由Spring IoC容器所管理的对象,被称之为bean. 简单地讲,bean就是由Spring容器初始化.装配及管 ...
- linux共享文件夹
mnt中没有 hgfs,重新安装vm tools后问题解决
- 淘淘商城_day02_课堂笔记
今日大纲 学习Nginx的使用 实现商品的管理 新增商品 查询商品列表 编辑商品 删除商品 上架和下架商品 学习nginx 开发阶段中的环境 开发环境:自己的电脑 测试环境:提供给测试人员使用的环境 ...
- Java IO 节点流 ByteArrayInput/OutputStream
Java IO 节点流 ByteArrayInput/OutputStream @author ixenos ByteArrayInputStream 包含一个内部缓冲区(字节数组byte[]),该缓 ...
- openwrt设置语言的过程
设置语言的流程一.关联的配置文件/etc/config/luci查看配置文件内容如下:root@hbg:/# cat /etc/config/luci config core 'main' ...
- vs2015打开cshtml文件失败的解决方法
最近不知道为什么,用vs2015打开cshtml识图文件的时候会报错.也不知道是什么原因,google之后得到解决方法如下: Close VS Delete the content of %Local ...
- shell 之awk 关联数组高级应用
最近由于数据迁移过,有些用户信息需要再次确认下,也许数据量比较大,但是需要最终确认的比如说是用户ID和其对应的用户积分数,这样就会导致出现文本a(老的数据),文本b(新的数据).比如 这是文本a.tx ...
- Openjudge-计算概论(A)-鸡尾酒疗法
描述: 鸡尾酒疗法,原指“高效抗逆转录病毒治疗”(HAART),由美籍华裔科学家何大一于1996年提出,是通过三种或三种以上的抗病毒药物联合使用来治疗艾 滋病.该疗法的应用可以减少单一用药产生的抗药性 ...
- 设n是奇数,证明:16|(n4+4n2+11)(整除原理1.1.1)
设n是奇数,证明:16|(n4+4n2+11) 解: 令n=2k+1,k∈z n4+4n2+11 =(2k+1)4+4(2k+1)2+11 =(4k2+4k+1)2+(2k+1)2+11 =16k4+ ...
- 查看Android下生成的.db数据库
1.在cmd中找到sdk中的platform-tools文件夹. 2.输入adb shell命令. 3.再输入sqlite3 /data/data/com.svs.db/databases/svs.d ...