state-of-the-art implementations related to visual recognition and search
http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html
Source Code
Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!
Feature Detection and Description
General Libraries:
- VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris
Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. Seea=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxlY2N2MTJmZWF0dXJlc3xneDo3ZDllMzVhMDA4YzEzNmU2" style="color:rgb(165,88,88)">Modern
– Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on
features: Software
session training - OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)
Fast Keypoint Detectors for Real-time Applications:
- FAST – High-speed corner detector implementation for a wide variety of platforms
- AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV
2010).
Binary Descriptors for Real-Time Applications:
- BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
- ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations,
but not scale) - BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
- FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)
SIFT and SURF Implementations:
- SIFT: VLFeat, OpenCV, Original
code by David Lowe, GPU implementation, OpenSIFT - SURF: Herbert Bay’s code, OpenCV, GPU-SURF
Other Local Feature Detectors and Descriptors:
- VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
- LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
- Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and
rendering style (CVPR 2012).
Global Image Descriptors:
- GIST – Matlab code for the GIST descriptor
- CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)
Feature Coding and Pooling
- VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including
Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding. - Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)
Convolutional Nets and Deep Learning
- Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
id=software:overfeat:start" style="color:rgb(165,88,88)">OverFeat
– C++ library for integrated classification and localization of objects.- EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on
convolutional neural networks. - Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural
networks. - Deep Learning - Various links for deep learning software.
Facial Feature Detection and Tracking
- IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).
- Deformable Part-based Detector – Library provided by the authors of the original paper (state-of-the-art in PASCAL VOC detection
task) - Efficient Deformable Part-Based Detector – Branch-and-Bound implementation for a deformable part-based detector.
- Accelerated Deformable Part Model – Efficient implementation of a method that achieves the exact same performance of deformable
part-based detectors but with significant acceleration (ECCV 2012). - Coarse-to-Fine Deformable Part Model – Fast approach for deformable object detection (CVPR 2011).
- Poselets – C++ and Matlab versions for object detection based on poselets.
- Part-based Face Detector and Pose Estimation – Implementation of a unified approach for face detection, pose estimation, and landmark
localization (CVPR 2012).
Attributes and Semantic Features
- Relative Attributes – Modified implementation of RankSVM to train Relative Attributes (ICCV 2011).
- Object Bank – Implementation of object bank semantic features (NIPS 2010). See also ActionBank
- Classemes, Picodes, and Meta-class features – Software for extracting high-level image descriptors
(ECCV 2010, NIPS 2011, CVPR 2012).
Large-Scale Learning
- Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
- LIBLINEAR – Library for large-scale linear SVM classification.
- VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.
Fast Indexing and Image Retrieval
- FLANN – Library for performing fast approximate nearest neighbor.
- Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
- ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing
(CVPR 2011). - INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).
Object Detection
- See Part-based Models and Convolutional
Nets above. - Pedestrian Detection at 100fps – Very fast and accurate pedestrian detector (CVPR 2012).
- Caltech Pedestrian Detection Benchmark – Excellent resource for pedestrian detection, with various links
for state-of-the-art implementations. - OpenCV – Enhanced implementation of Viola&Jones real-time object
detector, with trained models for face detection. - Efficient Subwindow Search – Source code for branch-and-bound optimization for efficient object localization (CVPR
2008).
3D Recognition
- Point-Cloud Library – Library for 3D image and point cloud processing.
Action Recognition
- ActionBank – Source code for action recognition based on the ActionBank representation (CVPR 2012).
- STIP Features – software for computing space-time interest point descriptors
- Independent Subspace Analysis – Look for Stacked ISA for Videos (CVPR 2011)
- Velocity Histories of Tracked Keypoints - C++ code for activity recognition using the velocity histories of tracked keypoints
(ICCV 2009)
Datasets
Attributes
- Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
- aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
- FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
- PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
- LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
- Human Attributes – 8,000 people with annotated attributes. Check also this link for
another dataset of human attributes. - SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
- ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
- Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for
the WhittleSearch data. - Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.
Fine-grained Visual Categorization
- Caltech-UCSD Birds Dataset – Hundreds of bird categories with annotated parts and attributes.
- Stanford Dogs Dataset – 20,000 images of 120 breeds of dogs from around the world.
- Oxford-IIIT Pet Dataset – 37 category pet dataset with roughly 200 images for each class. Pixel level trimap segmentation is
included. - Leeds Butterfly Dataset – 832 images of 10 species of butterflies.
- Oxford Flower Dataset – Hundreds of flower categories.
Face Detection
- FDDB – UMass face detection dataset and benchmark (5,000+ faces)
- CMU/MIT – Classical face detection dataset.
Face Recognition
- Face Recognition Homepage – Large collection of face recognition datasets.
- LFW – UMass unconstrained face recognition dataset (13,000+ face images).
- NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
- CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
- FERET – Classical face recognition dataset.
- Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale,
ORL, PIE, and Extended Yale B. - SCFace – Low-resolution face dataset captured from surveillance cameras.
Handwritten Digits
- MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.
Pedestrian Detection
- Caltech Pedestrian Detection Benchmark – 10 hours of video taken from a vehicle,350K bounding boxes for
about 2.3K unique pedestrians. - INRIA Person Dataset – Currently one of the most popular pedestrian detection datasets.
- ETH Pedestrian Dataset – Urban dataset captured from a stereo rig mounted on a stroller.
- TUD-Brussels Pedestrian Dataset – Dataset with image pairs recorded in an crowded urban setting with an onboard camera.
- PASCAL Human Detection – One of 20 categories in PASCAL VOC detection challenges.
- USC Pedestrian Dataset – Small dataset captured from surveillance cameras.
Generic Object Recognition
- ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
- Tiny Images – 80 million 32x32 low resolution images.
- Pascal VOC – One of the most influential visual recognition datasets.
- Caltech 101 / Caltech
256 – Popular image datasets containing 101 and 256 object categories, respectively. - MIT LabelMe – Online annotation tool for building computer vision databases.
Scene Recognition
- MIT SUN Dataset – MIT scene understanding dataset.
- UIUC Fifteen Scene Categories – Dataset of 15 natural scene categories.
Feature Detection and Description
- VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor
an evaluation framework.
Action Recognition
- Benchmarking Activity Recognition – CVPR 2012 tutorial covering various datasets
for action recognition.
RGBD Recognition
- RGB-D Object Dataset – Dataset containing 300 common household objects
state-of-the-art implementations related to visual recognition and search的更多相关文章
- Image Processing and Analysis_8_Edge Detection:Edge and line oriented contour detection State of the art ——2011
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io/ 里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...
- CNN for Visual Recognition (01)
CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...
- 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- A Theoretical Analysis of Feature Pooling in Visual Recognition
这篇是10年ICML的论文,但是它是从原理上来分析池化的原因,因为池化的好坏的确会影响到结果,比如有除了最大池化和均值池化,还有随机池化等等,在eccv14中海油在顶层加个空间金字塔池化的方法.可谓多 ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
随机推荐
- IIS架构与HTTP请求处理流程
IIS架构与HTTP请求处理流程 Windows操作系统中的IIS负责提供互联网服务,一台运行了IIS的计算机可以看成是一台Web服务器. Windows XP SP2 中IIS主版本号为5,Wind ...
- namespace命名空间
在讨论如何使用命名空间之前,必须了解 PHP 是如何知道要使用哪一个命名空间中的元素的.可以将 PHP 命名空间与文件系统作一个简单的类比.在文件系统中访问一个文件有三种方式: 相对文件名形式如foo ...
- Cordova CLI源码分析(三)——初始化
本部分主要涉及以下三个文件 1 cli.js 2 cordova.js 3 events.js 通过前一篇package.json的分析,可以知道,当命令行执行cordova相关命令时,首先调用mai ...
- android细节之禁用activity的系统的默认切换效果
网上有非常多方法来禁用系统的默认效果,这里贴上来我觉得最简单的方法. overridePendingTransition(Animation.INFINITE, Animation.INFINITE) ...
- 小米2S Mk6.0.1 [只能做测试体验,不能使用]
上几张高清图片.. 说明: 此版本只能做测试体验,不能做实际使用. 开发者: laser杨万荣 感谢: 秋叶随风ivan, m1cha 及 MoKee Open Source的各位开发者 下载地址:链 ...
- vultr centos x64 6.5.x 升级php7.0
升级前,先卸载 php5.6.x 卸载php5.6.2 从cent 6.5.x 需要卸载: yum remove php56u-mysqlnd-5.6.20-1.ius.centos6.x86_64 ...
- CentOS下tmux安装与使用
tmux介绍: tmux它是BSDScreen替代品,相对于Screen,它更加先进:支持屏幕切分,并且具备丰富的命令行參数,使其能够灵活.动态的进行各种布局和操作.它能够做到一条命令就启动起来(强大 ...
- EHCache的使用
在开发高并发量,高性能的网站应用系统时,缓存Cache起到了非常重要的作用.本文主要介绍EHCache的使用,以及使用EHCache的实践经验.笔者使用过多种基于Java的开源Cache组件,其中包括 ...
- 重新想象 Windows 8 Store Apps (3) - 控件之内容控件: ToolTip, Frame, AppBar, ContentControl, ContentPresenter; 容器控件: Border, Viewbox, Popup
原文:重新想象 Windows 8 Store Apps (3) - 控件之内容控件: ToolTip, Frame, AppBar, ContentControl, ContentPresenter ...
- 【Android笔记】MediaPlayer基本用法
Android MediaPlayer基本使用方式 使用MediaPlayer播放音频或者视频的最简单样例: JAVA代码部分: public class MediaPlayerStudy exten ...