Persistent Bookcase
time limit per test

2 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

  • i j — Place a book at position j at shelf i if there is no book at it.
  • i j — Remove the book from position j at shelf i if there is a book at it.
  • i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.
  • k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input

The first line of the input contains three integers nm and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Examples
input
2 3 3
1 1 1
3 2
4 0
output
1
4
0
input
4 2 6
3 2
2 2 2
3 3
3 2
2 2 2
3 2
output
2
1
3
3
2
4
input
2 2 2
3 2
2 2 1
output
2
1
Note

This image illustrates the second sample case.

分析:难点是询问为4的时候;
   根据询问建树,回到某个时刻就把他设为那个时刻的儿子即可,后面dfs就很轻松了;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=1e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,s[maxn][],ans[maxn],sum[],q[],p[][];
vi a[maxn];
void dfs(int now)
{
for(int x:a[now])
{
if(s[x][]==)
{
ans[x]=ans[now];
dfs(x);
}
else if(s[x][]==)
{
if((q[s[x][]]^p[s[x][]][s[x][]])==)
{
p[s[x][]][s[x][]]^=;
sum[s[x][]]++;
ans[x]=ans[now]+;
dfs(x);
p[s[x][]][s[x][]]^=;
sum[s[x][]]--;
}
else ans[x]=ans[now],dfs(x);
}
else if(s[x][]==)
{
if((q[s[x][]]^p[s[x][]][s[x][]])==)
{
p[s[x][]][s[x][]]^=;
sum[s[x][]]--;
ans[x]=ans[now]-;
dfs(x);
p[s[x][]][s[x][]]^=;
sum[s[x][]]++;
}
else ans[x]=ans[now],dfs(x);
}
else
{
q[s[x][]]^=;
ans[x]=ans[now]-*sum[s[x][]]+m;
sum[s[x][]]=m-sum[s[x][]];
dfs(x);
q[s[x][]]^=;
sum[s[x][]]=m-sum[s[x][]];
}
}
}
int main()
{
int i,j;
scanf("%d%d%d",&n,&m,&t);
rep(i,,t)
{
scanf("%d",&s[i][]);
if(s[i][]==||s[i][]==)
{
scanf("%d%d",&s[i][],&s[i][]);
a[i-].pb(i);
}
else if(s[i][]==)
{
scanf("%d",&s[i][]);
a[i-].pb(i);
}
else
{
scanf("%d",&s[i][]);
a[s[i][]].pb(i);
}
}
dfs();
rep(i,,t)printf("%d\n",ans[i]);
//system("Pause");
return ;
}

Persistent Bookcase的更多相关文章

  1. CodeForces #368 div2 D Persistent Bookcase DFS

    题目链接:D Persistent Bookcase 题意:有一个n*m的书架,开始是空的,现在有k种操作: 1 x y 这个位置如果没书,放书. 2 x y 这个位置如果有书,拿走. 3 x 反转这 ...

  2. 【Codeforces-707D】Persistent Bookcase DFS + 线段树

    D. Persistent Bookcase Recently in school Alina has learned what are the persistent data structures: ...

  3. Codeforces Round #368 (Div. 2) D. Persistent Bookcase

    Persistent Bookcase Problem Description: Recently in school Alina has learned what are the persisten ...

  4. Codeforces Round #368 (Div. 2) D. Persistent Bookcase 离线 暴力

    D. Persistent Bookcase 题目连接: http://www.codeforces.com/contest/707/problem/D Description Recently in ...

  5. codeforces 707D D. Persistent Bookcase(dfs)

    题目链接: D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input ...

  6. CF707D Persistent Bookcase

    CF707D Persistent Bookcase 洛谷评测传送门 题目描述 Recently in school Alina has learned what are the persistent ...

  7. Persistent Bookcase CodeForces - 707D (dfs 离线处理有根树模型的问题&&Bitset)

    Persistent Bookcase CodeForces - 707D time limit per test 2 seconds memory limit per test 512 megaby ...

  8. D. Persistent Bookcase(Codeforces Round #368 (Div. 2))

    D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  9. codeforces 707D:Persistent Bookcase

    Description Recently in school Alina has learned what are the persistent data structures: they are d ...

随机推荐

  1. ubuntu 设置vpn

    百度了资料 http://jingyan.baidu.com/article/fa4125aca7f1b628ad709271.html 1. 设置 VPN CONNECTION 2.configur ...

  2. WPF之TabControl控件用法

    先创建实体基类:NotificationObject(用来被实体类继承) 实现属性更改通知接口: using System; using System.Collections.Generic; usi ...

  3. PHP生成静态页面详解

    PHP生成静态页面详解 看到很多朋友在各个地方发帖问PHP生成静态文章系统的方法,以前曾做过这样一个系统,遂谈些看法,以供各位参考.好了,我们先回顾一些基本的概念. 一,PHP脚本与动态页面. PHP ...

  4. 从零开始学习OpenGL ES之一 – 基本概念

    我曾写过一些文章介绍iPhone OpenGL ES编程,但大部分针对的是已经至少懂得一些3D编程知识的人.作为起点,请下载我的OpenGL Xcode项目模板,而不要使用Apple提供的模板.你可以 ...

  5. C++的精髓——虚函数

    虚函数为了重载和多态的需要,在基类中是由定义的,即便定义是空,所以子类中可以重写也可以不写基类中的函数! 纯虚函数在基类中是没有定义的,必须在子类中加以实现,很像java中的接口函数! 虚函数 引入原 ...

  6. 学习笔记——桥接模式Bridge

    桥接模式的目的是在设计初,就将实现与接口分离,在以后实现发生变化时,只需要改变传递的实现对象,在保持接口一致的情况,达到实现的变更. 在OperationInterface中就调用实现的方法imp.O ...

  7. Linux一些命令

    1.查看系统安装软件 rpm -qa  //(不包括绿色安装的软件程序,也就是直接在安装目录中启动的不包括) rpm -qa |grep gcc 参数解释:q ——询问 a —— 查询全部   l — ...

  8. Mie散射 文献图片

    Technorati 标签: Mie Scattering,遥感,Remote Sensing

  9. 交换数组中两个元素的位置,元素包括key和value 一维数组

    /*author: yangyu@sina.cndescription: 交换数组中两个元素的位置,元素包括key和value,具体用法见下面的例子*/$arr = array(11=>'a', ...

  10. Windows 2003】利用域&&组策略自动部署软件

    Windows 2003]利用域&&组策略自动部署软件 转自 http://hi.baidu.com/qu6zhi/item/4c0fa100dc768613cc34ead0 ==== ...