线性判别分析算法(LDA)
1. 问题
之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。
比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。
再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢?
2. 线性判别分析(二类情况)
回顾我们之前的logistic回归方法,给定m个n维特征的训练样例(i从1到m),每个对应一个类标签。我们就是要学习出参数,使得(g是sigmoid函数)。
现在只考虑二值分类情况,也就是y=1或者y=0。
为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例,,其中有个样例属于类别,另外个样例属于类别。
现在我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够“清晰”地反映在低维数据上,也就是这一维就能决定每个样例的类别。
我们将这个最佳的向量称为w(d维),那么样例x(d维)到w上的投影可以用下式来计算
这里得到的y值不是0/1值,而是x投影到直线上的点到原点的距离。
当x是二维的,我们就是要找一条直线(方向为w)来做投影,然后寻找最能使样本点分离的直线。如下图:
从直观上来看,右图比较好,可以很好地将不同类别的样本点分离。
接下来我们从定量的角度来找到这个最佳的w。
首先我们寻找每类样例的均值(中心点),这里i只有两个
由于x到w投影后的样本点均值为
由此可知,投影后的的均值也就是样本中心点的投影。
什么是最佳的直线(w)呢?我们首先发现,能够使投影后的两类样本中心点尽量分离的直线是好的直线,定量表示就是:
J(w)越大越好。
但是只考虑J(w)行不行呢?不行,看下图
样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。
我们使用另外一个度量值,称作散列值(scatter),对投影后的类求散列值,如下
从公式中可以看出,只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。
而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值差越大越好,散列值越小越好。正好,我们可以使用J(w)和S来度量,最终的度量公式是
接下来的事就比较明显了,我们只需寻找使J(w)最大的w即可。
先把散列值公式展开
我们定义上式中中间那部分
这个公式的样子不就是少除以样例数的协方差矩阵么,称为散列矩阵(scatter matrices)
我们继续定义
称为Within-class scatter matrix。
那么回到上面的公式,使用替换中间部分,得
然后,我们展开分子
称为Between-class scatter,是两个向量的外积,虽然是个矩阵,但秩为1。
那么J(w)最终可以表示为
在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。因此我们打算令,那么加入拉格朗日乘子后,求导
其中用到了矩阵微积分,求导时可以简单地把当做看待。
如果可逆,那么将求导后的结果两边都乘以,得
这个可喜的结果就是w就是矩阵的特征向量了。
这个公式称为Fisher linear discrimination。
等等,让我们再观察一下,发现前面的公式
那么
代入最后的特征值公式得
由于对w扩大缩小任何倍不影响结果,因此可以约去两边的未知常数和,得到
至此,我们只需要求出原始样本的均值和方差就可以求出最佳的方向w,这就是Fisher于1936年提出的线性判别分析。
看上面二维样本的投影结果图:
3. 线性判别分析(多类情况)
前面是针对只有两个类的情况,假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?
我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,需要K维向量(或者叫做基向量)来做投影。
将这K维向量表示为。
我们将样本点在这K维向量投影后结果表示为,有以下公式成立
为了像上节一样度量J(w),我们打算仍然从类间散列度和类内散列度来考虑。
当样本是二维时,我们从几何意义上考虑:
其中和与上节的意义一样,是类别1里的样本点相对于该类中心点的散列程度。变成类别1中心点相对于样本中心点的协方差矩阵,即类1相对于的散列程度。
为
的计算公式不变,仍然类似于类内部样本点的协方差矩阵
需要变,原来度量的是两个均值点的散列情况,现在度量的是每类均值点相对于样本中心的散列情况。类似于将看作样本点,是均值的协方差矩阵,如果某类里面的样本点较多,那么其权重稍大,权重用Ni/N表示,但由于J(w)对倍数不敏感,因此使用Ni。
其中
是所有样本的均值。
上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。下面我们看样本点投影后的公式改变:
这两个是第i类样本点在某基向量上投影后的均值计算公式。
下面两个是在某基向量上投影后的和
其实就是将换成了。
综合各个投影向量(w)上的和,更新这两个参数,得到
W是基向量矩阵,是投影后的各个类内部的散列矩阵之和,是投影后各个类中心相对于全样本中心投影的散列矩阵之和。
回想我们上节的公式J(w),分子是两类中心距,分母是每个类自己的散列度。现在投影方向是多维了(好几条直线),分子需要做一些改变,我们不是求两两样本中心距之和(这个对描述类别间的分散程度没有用),而是求每类中心相对于全样本中心的散列度之和。
然而,最后的J(w)的形式是
由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(此处我感觉有点牵强,道理不是那么有说服力)。
整个问题又回归为求J(w)的最大值了,我们固定分母为1,然后求导,得出最后结果(我翻查了很多讲义和文章,没有找到求导的过程)
与上节得出的结论一样
最后还归结到了求矩阵的特征值上来了。首先求出的特征值,然后取前K个特征向量组成W矩阵即可。
注意:由于中的 秩为1,因此的秩至多为C(矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个后,最后一个可以有前面的来线性表示,因此的秩至多为C-1。那么K最大为C-1,即特征向量最多有C-1个。特征值大的对应的特征向量分割性能最好。
由于不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。
4. 实例
将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。
PCA与LDA的降维对比:
PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向。
LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别?
拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类。而怎么寻找这个y0呢?
看
根据中心极限定理,独立同分布的随机变量和符合高斯分布,然后利用极大似然估计求
然后用决策理论里的公式来寻找最佳的y0,详情请参阅PRML。
这是一种可行但比较繁琐的选取方法,可以看第7节(一些问题)来得到简单的答案。
5. 使用LDA的一些限制
1、 LDA至多可生成C-1维子空间
LDA降维后的维度区间在[1,C-1],与原始特征数n无关,对于二值分类,最多投影到1维。
2、 LDA不适合对非高斯分布样本进行降维。
上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。
3、 LDA在样本分类信息依赖方差而不是均值时,效果不好。
上图中,样本点依靠方差信息进行分类,而不是均值信息。LDA不能够进行有效分类,因为LDA过度依靠均值信息。
4、 LDA可能过度拟合数据。
6. LDA的一些变种
1、 非参数LDA
非参数LDA使用本地信息和K临近样本点来计算,使得是全秩的,这样我们可以抽取多余C-1个特征向量。而且投影后分离效果更好。
2、 正交LDA
先找到最佳的特征向量,然后找与这个特征向量正交且最大化fisher条件的向量。这种方法也能摆脱C-1的限制。
3、 一般化LDA
引入了贝叶斯风险等理论
4、 核函数LDA
将特征,使用核函数来计算。
7. 一些问题
上面在多值分类中使用的
是带权重的各类样本中心到全样本中心的散列矩阵。如果C=2(也就是二值分类时)套用这个公式,不能够得出在二值分类中使用的。
因此二值分类和多值分类时求得的会不同,而意义是一致的。
对于二值分类问题,令人惊奇的是最小二乘法和Fisher线性判别分析是一致的。
下面我们证明这个结论,并且给出第4节提出的y0值得选取问题。
回顾之前的线性回归,给定N个d维特征的训练样例(i从1到N),每个对应一个类标签。我们之前令y=0表示一类,y=1表示另一类,现在我们为了证明最小二乘法和LDA的关系,我们需要做一些改变
就是将0/1做了值替换。
我们列出最小二乘法公式
w和是拟合权重参数。
分别对和w求导得
从第一个式子展开可以得到
消元后,得
可以证明第二个式子展开后和下面的公式等价
其中和与二值分类中的公式一样。
由于
因此,最后结果仍然是
这个过程从几何意义上去理解也就是变形后的线性回归(将类标签重新定义),线性回归后的直线方向就是二值分类中LDA求得的直线方向w。
好了,我们从改变后的y的定义可以看出y>0属于类,y<0属于类。因此我们可以选取y0=0,即如果,就是类,否则是类。
写了好多,挺杂的,还有个topic模型也叫做LDA,不过名字叫做Latent Dirichlet Allocation,第二作者就是Andrew Ng大牛,最后一个他导师Jordan泰斗了,什么时候拜读后再写篇总结发上来吧。
线性判别分析算法(LDA)的更多相关文章
- 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...
- 机器学习入门-线性判别分析(LDA)1.LabelEncoder(进行标签的数字映射) 2.LinearDiscriminantAnalysis (sklearn的LDA模块)
1.from sklearn.processing import LabelEncoder 进行标签的代码编译 首先需要通过model.fit 进行预编译,然后使用transform进行实际编译 2. ...
- 机器学习中的数学-线性判别分析(LDA), 主成分分析(PCA)
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html 版权声明: 本文由L ...
- 机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
准则 采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量. 分类器设 ...
- 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)
先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学 ...
- 线性判别分析(LDA)
降维的作用: 高维数据特征个数多,特征样本多,维度也很大,计算量就会很大,调参和最后评估任务时,计算量非常大,导致效率低. 高位数据特征特别多,有的特征很重要,有的特征不重要,可以通过降维保留最好.最 ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
- 线性判别分析LDA详解
1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...
随机推荐
- PsExec.exe执行远程程序
PsExec.exe \\192.168.1.1 -u username -p password -i -d -s c:\Windows\system32\NETSTAT.exe -a
- 左右lcm,gcd一些性质
两个整数a,b 他们的最大公约数为n 最小公倍数为m 则有 a,b都能分解为有限个素数的积 12 = 2^2 * 3^1 * 5^0 , 30 = 2^1 * 3^1 ...
- nginx的五种负载算法模式
nginx 负载均衡5种配置方式 1.轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. 2.weight 指定轮询几率,weight和访问比率成正比 ...
- Humming Bird A20 SPI2驱动编译
Humming Bird A20 SPI2使用编译 Yao.GUET 2014-07-17,请注明出处:http://blog.csdn.net/Yao_GUET A20上带有4个spi接口,因为Hu ...
- C#修改用户名
string strCmdText; strCmdText = "useraccount where name='" + 旧密码 + "' rename " + ...
- oracle 创建用户,授权用户,创建表,查询表
原文:oracle 创建用户,授权用户,创建表,查询表 oracle 创建用户,授权用户,创建表,查询表 假设oracle10g所有的都已经安装和配置好 第一步:win+R,进入运行,cmd; 第二步 ...
- Yii2中如何使用CodeCeption
Yii2和CodeCeption CodeCeption是一个全栈的PHP测试框架,关于CodeCeption的介绍见:CodeCeption官方文档. Yii2官方增加了对CodeCeption的支 ...
- 出现Deprecated: Function ereg_replace() is deprecated in 的原因及解决方法
在 php5.3环境下运行oscommerce,常常会出现Deprecated: Function ereg() is deprecated in...和Deprecated: Function er ...
- AngularJS + CoffeeScript
AngularJS + CoffeeScript 前端开发环境配置详解 AngularJS 号称 '第一框架' ('The first framework') 确实是名不虚传.由其从jQuery中完全 ...
- SQL点滴9—SQL Server中的事务处理以及SSIS中的内建事务
原文:SQL点滴9-SQL Server中的事务处理以及SSIS中的内建事务 我们可以把SSIS中的整个package包含在一个事务中,但是如果在package的执行过程中有一个表需要锁定应该怎么处理 ...