CF 787D Legacy(线段树思想构图+最短路)
2 seconds
256 megabytes
standard input
standard output
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.
There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.
By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.
Plans on the website have three types:
- With a plan of this type you can open a portal from planet v to planet u.
- With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
- With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.
Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.
The first line of input contains three integers n, q and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.
The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers v, u and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers v, l, r and w where w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).
In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or - 1 if it's impossible to get to that planet.
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
0 28 12
4 3 1
3 4 1 3 12
2 2 3 4 10
1 2 4 16
0 -1 -1 12
In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.
题目链接:CF 787D
很脑洞的一道题,比较好的做法是用线段树分割区间的思想,把1-n看成区间构建两颗线段树A和B,然后把所有的子区间都看成一个点,这样后面的加边就是对这些区间加边了,构建好A和B,A父子节点之间自底向上加有向边,B树自顶向下加有向边,然后把B树的子节点加无向边到对应的A树的子节点,代表这些点可以推出(到达)哪些点,由于一开始在子节点s(A[s]还是B[s]无所谓,两者本来就是强连通的),哪里都不能去,因此最后要检查的就是B树的子节点的dis值(在A数的话哪里都可以)。
然后就是三种区间操作
1:u->v,加边$<A的叶子节点u,B的叶子节点v,w>$
2:u->[l,r],加边$<A的叶子节点u,\{B树中[l,r]区间对应的节点集合\},w>$
3:[l,r]->v,加边$<\{A树中[l,r]区间对应的节点集合\},B树的叶子节点v,w>$
这样一来三种边都不会多也不会少刚好可以到达正确的点。然后从B[s]的跑最短路即可,最后检查B[i]的dis即可,当然一开始要把A、B树的叶子节点记录下来方便后面加边使用
边数最坏情况应该是每一层左右均取两个区间,一直递归下去,有$log_{2}N$层,因此边数大约是$O(4*q*log_{2}N+2N)$
代码:
#include <stdio.h>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1e5 + 7;
struct edge
{
int to, nxt;
LL w;
edge() {}
edge(int _to, int _nxt, LL _w): to(_to), nxt(_nxt), w(_w) {}
} E[N * 68];
int head[N << 2], tot;
LL d[N << 2];
bitset < N << 2 > vis;
int id[2][N << 2], sz;
vector<int>st;
int A[N], B[N]; void init()
{
CLR(head, -1);
tot = 0;
sz = 0;
}
inline void add(int s, int t, LL w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
void build(int k, int l, int r, int o)
{
id[o][k] = ++sz;
if (l == r)
{
if (o)
A[l] = id[o][k];
else
B[l] = id[o][k];
return ;
}
else
{
int mid = MID(l, r);
build(LC(k), l, mid, o);
build(RC(k), mid + 1, r, o);
if (o) //A树自底向上
{
add(id[o][LC(k)], id[o][k], 0);
add(id[o][RC(k)], id[o][k], 0);
}
else//B树自顶向下
{
add(id[o][k], id[o][LC(k)], 0);
add(id[o][k], id[o][RC(k)], 0);
}
}
}
void Findset(int k, int l, int r, int ql, int qr, int o)
{
if (ql <= l && r <= qr)
st.push_back(id[o][k]);
else
{
int mid = MID(l, r);
if (qr <= mid)
Findset(LC(k), l, mid, ql, qr, o);
else if (ql > mid)
Findset(RC(k), mid + 1, r, ql, qr, o);
else
Findset(LC(k), l, mid, ql, mid, o), Findset(RC(k), mid + 1, r, mid + 1, qr, o);
}
}
void SPFA(int s)
{
queue<int>Q;
Q.push(s);
vis.reset();
CLR(d, INF);
d[s] = 0;
while (!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] > d[u] + E[i].w)
{
d[v] = d[u] + E[i].w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
}
}
}
}
}
int main(void)
{
int n, q, s, i, ops;
while (~scanf("%d%d%d", &n, &q, &s))
{
init();
build(1, 1, n, 1);
build(1, 1, n, 0);
for (i = 1; i <= n; ++i)
{
add(A[i], B[i], 0);
add(B[i], A[i], 0);
}
for (i = 0; i < q; ++i)
{
scanf("%d", &ops);
if (ops == 1)
{
int u, v;
LL w;
scanf("%d%d%I64d", &u, &v, &w);
add(A[u], B[v], w);
}
else if (ops == 2)
{
int u, l, r;
LL w;
scanf("%d%d%d%I64d", &u, &l, &r, &w);
st.clear();
Findset(1, 1, n, l, r, 0);
for (auto &x : st)
add(A[u], x, w);
}
else if (ops == 3)
{
int v, l, r;
LL w;
scanf("%d%d%d%I64d", &v, &l, &r, &w);
st.clear();
Findset(1, 1, n, l, r, 1);
for (auto &x : st)
add(x, B[v], w);
}
}
SPFA(B[s]);
for (i = 1; i <= n; ++i)
printf("%I64d%c", d[B[i]] == 0x3f3f3f3f3f3f3f3f ? -1 : d[B[i]], " \n"[i == n]);
}
return 0;
}
CF 787D Legacy(线段树思想构图+最短路)的更多相关文章
- Codeforces 787D. Legacy 线段树建模+最短路
D. Legacy time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...
- codeforces 787D - Legacy 线段树优化建图,最短路
题意: 有n个点,q个询问, 每次询问有一种操作. 操作1:u→[l,r](即u到l,l+1,l+2,...,r距离均为w)的距离为w: 操作2:[l,r]→u的距离为w 操作3:u到v的距离为w 最 ...
- Codeforces 787D Legacy 线段树 最短路
题意: 有\(n(1 \leq n \leq 10^5)\)个点,\(q(1 \leq q \leq 10^5)\)条路和起点\(s\) 路有三种类型: 从点\(v\)到点\(u\)需要花费\(w\) ...
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- [CF787D]遗产(Legacy)-线段树-优化Dijkstra(内含数据生成器)
Problem 遗产 题目大意 给出一个带权有向图,有三种操作: 1.u->v添加一条权值为w的边 2.区间[l,r]->v添加权值为w的边 3.v->区间[l,r]添加权值为w的边 ...
- CF786B Legacy && 线段树优化连边
线段树优化连边 要求点 \(x\) 向区间 \([L, R]\) 连边, 一次的复杂度上限为 \(O(n)\) 然后弄成线段树的结构 先父子连边边权为 \(0\) 这样连边就只需要连父亲就可以等效于连 ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- CodeForces - 786B Legacy (线段树+DIjkstra+思维)
题意:给N个点和Q条选项,有三种类型的选项:1.从u到v花费w修建一条路:2.从u到下标区间为[L,R]的点花费w修建一条路; 3.从下标区间为[L,R]的点到u花费w修建一条路. 然后求起点s到其余 ...
随机推荐
- socket上传nsdictionary的json数据异常
异常情况如下:按照正常的写法,将上传对数据封装在nsdictionary里,然后检验是否符合json格式化,调用系统的json序列化方法将nsdictionary转化为json数据然后上传, 异常结果 ...
- JS实现Promise原理
promise是用来解决Js中的异步问题的,js中所有的异步可从callback → promise → generator + co = async + await 其实所有的都是callback的 ...
- nodejs 发送邮件(阿里云)
1.下载 模块 2. 编辑文件 var nodemailer = require('nodemailer'); var sendEmail = function(emailinfo,callbac ...
- AWS CentOS7 实例修改主机名
问题描述: AWS EC2 实例在升级到CentOS7以后,我们发现主机名的修改不再像之前的版本(CentOS 5/6)一样简单. 每次新建实例之后,修改好主机名,重启或者克隆之后的机器,主机名还是会 ...
- 项目配置中 提示access denied的问题 解决方案
项目配置中 提示access denied的问题,一般原因是你的服务器或虚拟主机的pathinfo没开.... 具体解决办法如下 在PHP安装文件夹下找到php.ini.在文件中搜索cgi.fix_p ...
- Python解压ZIP、RAR等常用压缩格式的方法
解压大杀器 首先祭出可以应对多种压缩包格式的python库:patool.如果平时只用基本的解压.打包等操作,也不想详细了解各种压缩格式对应的python库,patool应该是个不错的选择. pato ...
- linux无名管道
特点 无名管道是半双工的,也就是说,一个管道要么只能读,要么只能写 只能在有共同祖先的进程间使用(父子进程.兄弟进程.子孙进程等) fork或者execve调用创建的子进程,继承了父进程的文件描述符 ...
- C++ 基础 引用
1.引用的本质 int b = 10; int &a = b; 等效于: int * const a = &b; 由于 a 是 const声明,所以一旦定义无法修改,所以要在定义时就要 ...
- 匿名函数lambda python
lambda 的主体是一个表达式,不是一个代码块lambda 只有一行,仅仅能在lambda表达式种封装有限的逻辑进去匿名函数:需要一个函数,而又不想动脑筋去想名字 #普通函数的定义 def f(a, ...
- 笔记-scrapy-Request/Response
笔记-scrapy-Request/Response 1. 简介 Scrapy使用Request和Response来爬取网站. 2. request class scrapy.http ...