题目描述

输入

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

输出

仅包含一个整数,表示在合法基础上最小的总不和谐值。

样例输入

2 2 2
1
6 1
6 1
2 6
2 6

样例输出

6


题目大意

给定一个p行q列的矩阵,每个位置可以选择一个1~r的整数,选择不同的数有不同的代价,并且相邻的两个位置上的数的差的绝对值不能超过d,求最小总代价

题解

网络流最小割

看到这题首先一脸懵**,不知道怎么搞,然后想起省选讲题时清华学长所说:条件限制强、数据不大不小的题基本上就是网络流。

于是想了一下但是没有写出来,直到Apio2017时讲到了这道题才明白。

首先,如果是网络流,一定是最小割模型或费用流模型。但费用流很难表达相邻相差不超过d的条件,于是放弃,想最小割。

假如没有限制条件,那么可以对矩阵每个位置拆出r+1个点,连上r条边,边权代表代价。跑最小割即可。(如果不是为了网络流不会这么思考)

然后考虑限制条件,那么应该有:割断边位置超过d的不应算作最小割的一部分。那么让它不为最小割即可。

我们可以在位置相差超过d的点之间加一条容量为inf的边,这条边不会被割掉,则其两边的边一定会被割掉。

故连边(k,i)->(k',i-d),容量为inf,其中编号为k和k'的点相邻。

这样建完图以后跑最小割即为答案。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 70010
#define M 1000010
#define inf 0x3f3f3f3f
#define pos(i , j , k) n * m * (k) + m * (i - 1) + j
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , p , d , x , i , j , k , ans = 0;
scanf("%d%d%d%d" , &n , &m , &p , &d) , s = 0 , t = n * m * (p + 1) + 1;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
add(s , pos(i , j , 0) , inf) , add(pos(i , j , p) , t , inf);
for(k = 1 ; k <= p ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &x) , add(pos(i , j , k - 1) , pos(i , j , k) , x);
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= m ; j ++ )
{
for(k = d + 1 ; k < p ; k ++ )
{
if(i > 1) add(pos(i , j , k) , pos(i - 1 , j , k - d) , inf);
if(i < n) add(pos(i , j , k) , pos(i + 1 , j , k - d) , inf);
if(j > 1) add(pos(i , j , k) , pos(i , j - 1 , k - d) , inf);
if(j < m) add(pos(i , j , k) , pos(i , j + 1 , k - d) , inf);
}
}
}
while(bfs()) ans += dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj3144】[Hnoi2013]切糕 网络流最小割的更多相关文章

  1. BZOJ3144 [Hnoi2013]切糕 【最小割】

    题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  2. [BZOJ3144][HNOI2013]切糕(最小割)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3144 分析:神题不解释 http://www.cnblogs.com/zig-zag/ ...

  3. BZOJ_3144_[Hnoi2013]切糕_最小割

    BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...

  4. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

  5. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  6. 【洛谷 P3227】 [HNOI2013]切糕(最小割)

    题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...

  7. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  8. bzoj 3144 [Hnoi2013]切糕【最小割+dinic】

    都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...

  9. 【BZOJ 3144】 [Hnoi2013]切糕 真·最小割

    一开始一脸懵逼后来发现,他不就是割吗,我们只要满足条件就割就行了,于是我们把他连了P*Q*R条边,然而我们要怎样限制D呢?我们只要满足对于任意相邻的两条路,只要其有个口大于D就不行就好了因此我们只要把 ...

随机推荐

  1. 在Linux上部署Kettle环境

    首先我们有一个正常安装的,桌面版的Linux. Kettle的应用程序是Linux版本与Windows版本在同一个文件夹下共存的,所以可以直接把本机上的Kettle解压,通过FTP工具上传到Linux ...

  2. EL 和 JSTL 的使用

    EL Express Language 表达式语言 就是把<% 这里可以写java语言 %> 这种jsp的写法简化变为${ }的方式 例如 action="${pageConte ...

  3. java基础 UDP通信 user datagram protocol 用户数据豆协议 TCP transmission control protocol 传输控制协议 多线程TCP

    无连接通信 UDP 客户端 package com.swift.test; import java.io.IOException; import java.net.DatagramPacket; im ...

  4. node-inspector调试工具使用方法

    开发node.js程序使用的是javascript语言,其中最麻烦的还是调试,这里介绍一下node-inspector使用方法.具体资料可以看参考资料中的GITHUB文档. 工具/原料   node. ...

  5. 用IDEA搭建基于maven的springboot项目

     第一步:新建一个Project 第二步:选择Spring Initializr和SDK 然后next  第三步:修改Group和Artifact 第四步:按自己的需求选,这里我选的是Web,然后ne ...

  6. 简版会员私信表设计及sql 私信列表查询

    先上下表结构和数据 DROP TABLE IF EXISTS `message`; CREATE TABLE `message` ( `id` int(11) NOT NULL AUTO_INCREM ...

  7. linux基础目录

    第1章 linux目录结构 1.1 linux目录结构的特点 一切皆文件 1)倒挂的树状结构   一切从根开始 2)linux每个目录可以挂载在不同的设备(磁盘)上.windows不容易做到. /da ...

  8. scrapy--matplotlib

    昨天晚上看了一些关于保存文件的相关资料,早早的睡了,白天根据网上查找的资料,自己再捡起来.弄了一上午就爬取出来了,开心!!!好吧,让我们开始 老规矩,先上图.大家也赶快行动起来 分类文件: 文件内co ...

  9. javaScript的闭包 js变量作用域

    js的闭包 js的变量作用域: var a=90; //定义一个全局变量 function test(){ a=123; //使用外层的 a变量 } test(); document.write(&q ...

  10. zookeeper的搭建方法

    1.创建三台虚拟机分别在虚拟机上安装Ubuntu16.04Server版的系统. 2.首先选择配置好第一台虚拟机,使用命令vim /etc/hosts对该文件进行修改 3.将zookeeper-3.4 ...