BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目
如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌
图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。
举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6
,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两
个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙
人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最
短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1
,你的任务是求出给定的仙人图的直径。
输入格式
输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶
点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上
的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边
。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们
保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。
输出格式
只需输出一个数,这个数表示仙人图的直径长度。
输入样例
样例1:
15 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10
样例2:
10 1
10 1 2 3 4 5 6 7 8 9 10
输出样例
样例1:
8
样例2:
9
提示
对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。
【注意】使用Pascal语言的选手请注意:你的程序在处理大数据的时候可能会出现栈溢出。
如果需要调整栈空间的大小,可以在程序的开头填加一句:{$M 5000000},其中5000000即
指代栈空间的大小,请根据自己的程序选择适当的数值。
题解
仙人掌入门题QAQ
看了好久题解,终于弄懂了。
想着自己肝,结果代码能力太差还是没处理好。
最后参照了下黄学长的代码A了
【月考D1爆炸中,仍在机房浪】
仙人掌
仙人掌,相信大家听得非常的多,一定也对其产生过浓厚兴趣。
其实仙人掌,说白了就是一棵树,上边套着很多的简单环,环间互不干涉,可以单独处理。【严谨定义见题目】
举一个比较直观的例子:【画得略丑】
环间互不干涉,这是一个很优美的性质,根据它我们可以得到了仙人图上的dp算法
①首先我们看看如果是一棵单纯的树怎么做:
如果是树,其实就是求树的直径,即树上最远的两个点的距离
树形dp非常简单:
令f[i]表示i节点往下到叶子最深的路径的长度
f[i]=maxf[son]+1;
由于f[i]对于儿子逐个更新,在更新到儿子3的时候,f[i]里存的是儿子1、2更新完的答案,此时f[i]+f[son3]+1即表示f[i]的前两个儿子中经过i节点到达3儿子所在子树所形成的最长路径长度,可用来同步更新答案ans=max(ans,f[u]+f[son]+1)
最后面跑完,答案就是所求
②加上环
加上环之后我们只需要单独考虑环带来的影响。
什么意思?如图:
环上每个点都有属于自己的外向树,我们在dfs更新f[i]时忽略与i处于一个环上的点,此时环上所有点的f[i]都指自己外向树中的最大深度
我们就可以跑一遍环上的dp来更新答案,用单调队列优化,最后再把最高点的f[i]更新了就好【因为f[i]往上还要更新别的点】
如何操作?
更新答案
首先对于环上两点i,j (i > j)我们有ans=max(ans,f[i]+f[j]+min(i−j,n−i+j)
我们可以将环拆开,延长一倍,用单调队列优化。队首元素与当前元素距离不得超过环的一半,这样就保证了一定是从最近路径更新的,保证了答案的正确性和完整性
更新最高点f[rt]
枚举即可,详见代码
蒟蒻要上晚自习回去复习月考了,先简单写到这,改天写详细些
【已upd】
放代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 50005,maxm = 10000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,h[maxn],ne = 0;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int fa[maxn],dep[maxn],dfn[maxn],low[maxn],f[maxn],st[maxn],top = 0,cnt = 0;
int ans = 0,cir[2 * maxn],ci = 0,q[2 * maxn],head,tail,N;
void DP(int rt,int u){
int ci = dep[u] - dep[rt] + 1;
for (int i = u; i != rt; i = fa[i])
cir[ci--] = f[i];
cir[ci] = f[rt];
ci = dep[u] - dep[rt] + 1;
for (int i = 1; i <= ci; i++) cir[ci + i] = cir[i];
N = ci << 1; head = tail = 1; q[tail] = 1;
for (int i = 2; i <= N; i++){
while (i - q[head] > (ci >> 1)) head++;
ans = max(ans,cir[i] + i - q[head] + cir[q[head]]);
while (head <= tail && cir[i] - i >= cir[q[tail]] - q[tail]) tail--;
q[++tail] = i;
}
for (int i = 2; i <= ci; i++)
f[rt] = max(f[rt],cir[i] + min(i - 1,ci - i + 1));
}
void dfs(int u){
dfn[u] = low[u] = ++cnt; st[++top] = u; int to;
Redge(u) if ((to = ed[k].to) != fa[u]){
if (!dfn[to]){
fa[to] = u; dep[to] = dep[u] + 1; dfs(to);
low[u] = min(low[u],low[to]);
}
else low[u] = min(low[u],dfn[to]);
if (low[to] > dfn[u])
ans = max(ans,f[u] + f[to] + 1),f[u] = max(f[u],f[to] + 1);
low[u] = min(low[u],low[to]);
}
Redge(u) if (fa[to = ed[k].to] != u && dfn[u] < dfn[to])
DP(u,to);
}
int main(){
memset(h,-1,sizeof(h));
n = RD(); m = RD(); int k,a,b;
while (m--){
if (!(k = RD())) continue;
a = RD();
for (int i = 2; i <= k; i++) b = a,a = RD(),build(b,a);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) dfs(i);
printf("%d\n",ans);
return 0;
}
BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】的更多相关文章
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
- [BZOJ1023][SHOI2008]cactus仙人掌图 DP
题目链接 套路就是先考虑一般的树上做法.求直径的dp的做法大家应该都会吧. 那么设\(dp[i]\)表示\(i\)的子树中的点到\(i\)的最大距离. 在dp的过程中 \[ ans=\max\{dp[ ...
- [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
- bzoj1023 [SHOI2008]cactus仙人掌图 & poj3567 Cactus Reloaded——求仙人掌直径
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 仙人掌!直接模仿 ...
随机推荐
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- MySQL另类的备份恢复方法——innodb可传输表空间
Preface There're many ways in backing up or migrating data from one server to another one.Lo ...
- MySQL查询优化 对not in 、in 的优化
因为 not in不走索引,所以不在不得已情况下,就不要使用not in 下面使用 join 来替代not in 做查询 select ID from A where ID not in (selec ...
- iOS常用控件-UIScrollView
一. 常见属性 @property (nonatomic) CGPoint contentOffset; //记录UIScrollView滚动的位置 @pro ...
- B1086 就不告诉你 (15分)
B1086 就不告诉你 (15分) 做作业的时候,邻座的小盆友问你:"五乘以七等于多少?"你应该不失礼貌地围笑着告诉他:"五十三."本题就要求你,对任何一对给定 ...
- 输入cin对象的用法
#include<iostream> using namespace std; int main() { int carrots ; cout << "How man ...
- 笔记-docker-1
笔记-docker-1 1. 简介 1.1. 什么是Docker? Docker 是世界领先的软件容器平台.开发人员利用 Docker 可以消除协作编码时“在我的机器上可正常工作”的问 ...
- 6.Mongodb索引
1.索引 2.索引的命令
- hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)
#1394 : 网络流四·最小路径覆盖 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机 ...
- centos7.3配置guacamole
目录 1 安装guacamole所需要的依赖库 2 安装配置tomcat,架设服务 2.1 下载tomcat 2.2 配置环境变量,使tomcat可以找到guacamole客户端配置 2.3 安装gu ...