[bzoj1798][Ahoi2009]Seq 维护序列seq ([洛谷P3373]【模板】线段树 2)
题目大意:有$n$个数,有$m$个操作,有三种:
- $1\;l\;r\;x:$把区间$[l,r]$内的数乘上$x$
- $2\;l\;r\;x:$把区间$[l,r]$内的数加上$x$
- $3\;l\;r:$询问区间$[l,r]$的和,对$p$取模
(线段树2就是先读入$n\;m\;p$,再读入序列;本题是先读入$n\;p$,读入序列,再读入$m$,双倍经验)
题解:线段树,把$lazy\_tag$变成两个,分别记录区间加和区间乘,注意乘法的优先级比加法高
卡点:无(我以前写的是什么代码啊?)
C++ Code:
#include <cstdio>
#define maxn 100010 << 2
long long V[maxn], cov[maxn], tg[maxn];
int n, m;
int s[maxn], L, R;
long long p, x;
void update(int rt) {
V[rt] = (V[rt << 1] + V[rt << 1 | 1]) % p;
}
void build(int rt, int l, int r) {
cov[rt] = 1;
if (l == r) {
V[rt] = s[l] % p;
return ;
}
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
update(rt);
}
void pushdown(int rt, long long len) {
long long &Cov = cov[rt], &Tg = tg[rt];
V[rt << 1] = (V[rt << 1] * Cov + Tg * (len + 1 >> 1)) % p;
V[rt << 1 | 1] = (V[rt << 1 | 1] * Cov + Tg * (len >> 1)) % p;
cov[rt << 1] = (cov[rt << 1] * Cov) % p;
cov[rt << 1 | 1] = (cov[rt << 1 | 1] * Cov) % p;
tg[rt << 1] = (tg[rt << 1] * Cov + Tg) % p;
tg[rt << 1 | 1] = (tg[rt << 1 | 1] * Cov + Tg) % p;
Cov = 1, Tg = 0;
}
void add1(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = (V[rt] * x) % p;
cov[rt] = (cov[rt] * x) % p;
tg[rt] = (tg[rt] * x) % p;
return ;
}
int mid = l + r >> 1;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) add1(rt << 1, l, mid);
if (R > mid) add1(rt << 1 | 1, mid + 1, r);
update(rt);
}
void add2(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = (V[rt] + x * (r - l + 1ll)) % p;
tg[rt] = (tg[rt] + x) % p;
return ;
}
int mid = l + r >> 1;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) add2(rt << 1, l, mid);
if (R > mid) add2(rt << 1 | 1, mid + 1, r);
update(rt);
}
long long ask(int rt, int l, int r) {
if (L <= l && R >= r) return V[rt] % p;
int mid = l + r >> 1;
long long ans = 0;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) ans = ask(rt << 1, l, mid);
if (R > mid) ans = (ans + ask(rt << 1 | 1, mid + 1, r)) % p;
return ans;
}
int main() {
scanf("%d%lld", &n, &p);
for (int i = 1; i <= n; i++) scanf("%d", s + i);
build(1, 1, n);
scanf("%d", &m);
while (m --> 0) {
long long op;
scanf("%lld%d%d", &op, &L, &R);
switch (op) {
case 1: {
scanf("%lld", &x);
add1(1, 1, n);
break;
}
case 2: {
scanf("%lld", &x);
add2(1, 1, n);
break;
}
default: printf("%lld\n", ask(1, 1, n));
}
}
return 0;
}
[bzoj1798][Ahoi2009]Seq 维护序列seq ([洛谷P3373]【模板】线段树 2)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 5504 Solved: 1937[Submit ...
- BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )
线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...
- 1798: [Ahoi2009]Seq 维护序列seq
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 2930 Solved: 1087[Submit ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 7773 Solved: 2792[Submit ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...
- Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...
- BZOJ1798[Ahoi2009]Seq 维护序列seq 题解
题目大意: 有长为N的数列,有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值. ...
- 【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
随机推荐
- java 集合 HashSet 实现随机双色球 HashSet addAll() 实现去重后合并 HashSet对象去重 复写 HashCode()方法和equals方法 ArrayList去重
package com.swift.lianxi; import java.util.HashSet; import java.util.Random; /*训练知识点:HashSet 训练描述 双色 ...
- JS - 简单的下载图片至本地
<iframe id="saveImg" src="图片路径" style="display:none;"></ifram ...
- tcp回显客户端发送的数据
客户端: import socket tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp_socket.connect ...
- kali安装ssh服务
一. kali安装ssh服务 1.修改源 root@DGG:~# vi /etc/apt/sources.list deb http://http.kali.org/kali kali-rolling ...
- PHPExcel 中文使用手册详解
/** * * execl数据导出 * 应用场景:订单导出 * @param string $title 模型名(如Member),用于导出生成文件名的前缀 * @param array $cellN ...
- BZOJ 1441: Min(裴蜀定理)
BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...
- SpringMVC使用注解@RequestMapping映射请求
pringMVC通过使用@RequestMapping注解,实现指定控制器可以处理哪些URL请求. 控制器的类定义及方法定义处都可以标注@RequestMapping: 类定义处:提供初步的请求映射信 ...
- HyperLedger Fabric ca 1.2 正式环境部署
生成一个根CA(RootCA),在根CA下3个中间CA(IntermediaCA). 1. 运行和配置RootCA服务#cd /opt/gopath/src/github.com/hyperledge ...
- 队列--数据结构与算法JavaScript描述(5)
队列 Queue 概念 队列是一种列表,但队列只能在队尾插入元,在队首删除元素. 队列是一种先进先出的数据结构,用于存储按顺序排列的数据,被用在很多地方,比如提交操作系统执行的一系列进程.打印任务池等 ...
- Android面试收集录8 HandlerThread详解
1.前言 我们知道在Android系统中,我们执行完耗时操作都要另外开启子线程来执行,执行完线程以后线程会自动销毁. 想象一下如果我们在项目中经常要执行耗时操作,如果经常要开启线程,接着又销毁线程, ...