[bzoj1798][Ahoi2009]Seq 维护序列seq ([洛谷P3373]【模板】线段树 2)
题目大意:有$n$个数,有$m$个操作,有三种:
- $1\;l\;r\;x:$把区间$[l,r]$内的数乘上$x$
- $2\;l\;r\;x:$把区间$[l,r]$内的数加上$x$
- $3\;l\;r:$询问区间$[l,r]$的和,对$p$取模
(线段树2就是先读入$n\;m\;p$,再读入序列;本题是先读入$n\;p$,读入序列,再读入$m$,双倍经验)
题解:线段树,把$lazy\_tag$变成两个,分别记录区间加和区间乘,注意乘法的优先级比加法高
卡点:无(我以前写的是什么代码啊?)
C++ Code:
#include <cstdio>
#define maxn 100010 << 2
long long V[maxn], cov[maxn], tg[maxn];
int n, m;
int s[maxn], L, R;
long long p, x;
void update(int rt) {
V[rt] = (V[rt << 1] + V[rt << 1 | 1]) % p;
}
void build(int rt, int l, int r) {
cov[rt] = 1;
if (l == r) {
V[rt] = s[l] % p;
return ;
}
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
update(rt);
}
void pushdown(int rt, long long len) {
long long &Cov = cov[rt], &Tg = tg[rt];
V[rt << 1] = (V[rt << 1] * Cov + Tg * (len + 1 >> 1)) % p;
V[rt << 1 | 1] = (V[rt << 1 | 1] * Cov + Tg * (len >> 1)) % p;
cov[rt << 1] = (cov[rt << 1] * Cov) % p;
cov[rt << 1 | 1] = (cov[rt << 1 | 1] * Cov) % p;
tg[rt << 1] = (tg[rt << 1] * Cov + Tg) % p;
tg[rt << 1 | 1] = (tg[rt << 1 | 1] * Cov + Tg) % p;
Cov = 1, Tg = 0;
}
void add1(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = (V[rt] * x) % p;
cov[rt] = (cov[rt] * x) % p;
tg[rt] = (tg[rt] * x) % p;
return ;
}
int mid = l + r >> 1;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) add1(rt << 1, l, mid);
if (R > mid) add1(rt << 1 | 1, mid + 1, r);
update(rt);
}
void add2(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = (V[rt] + x * (r - l + 1ll)) % p;
tg[rt] = (tg[rt] + x) % p;
return ;
}
int mid = l + r >> 1;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) add2(rt << 1, l, mid);
if (R > mid) add2(rt << 1 | 1, mid + 1, r);
update(rt);
}
long long ask(int rt, int l, int r) {
if (L <= l && R >= r) return V[rt] % p;
int mid = l + r >> 1;
long long ans = 0;
if (cov[rt] != 1 || tg[rt]) pushdown(rt, r - l + 1);
if (L <= mid) ans = ask(rt << 1, l, mid);
if (R > mid) ans = (ans + ask(rt << 1 | 1, mid + 1, r)) % p;
return ans;
}
int main() {
scanf("%d%lld", &n, &p);
for (int i = 1; i <= n; i++) scanf("%d", s + i);
build(1, 1, n);
scanf("%d", &m);
while (m --> 0) {
long long op;
scanf("%lld%d%d", &op, &L, &R);
switch (op) {
case 1: {
scanf("%lld", &x);
add1(1, 1, n);
break;
}
case 2: {
scanf("%lld", &x);
add2(1, 1, n);
break;
}
default: printf("%lld\n", ask(1, 1, n));
}
}
return 0;
}
[bzoj1798][Ahoi2009]Seq 维护序列seq ([洛谷P3373]【模板】线段树 2)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 5504 Solved: 1937[Submit ...
- BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )
线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...
- 1798: [Ahoi2009]Seq 维护序列seq
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 2930 Solved: 1087[Submit ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 7773 Solved: 2792[Submit ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...
- Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...
- BZOJ1798[Ahoi2009]Seq 维护序列seq 题解
题目大意: 有长为N的数列,有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值. ...
- 【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
随机推荐
- JavaScript: window.onload = function() {} 里面的函数不执行
问题:写了一个最简单的页面.在script标签中使用的 window.onload = function() { function add() { //... } } 页面上:<div oncl ...
- 【学时总结】◆学时·VII◆ 高维DP
◆学时·VII◆ 高维DP 自学之余,偶遇DP…… ◇ 算法概述 顾名思义——一种处理多方面状态的DP,这种DP特点是……每一维的大小都不算太大(不然用dp数组存储下来内存会炸),而且枚举时容易超时… ...
- 【软件笔记】 ◆笔记·I◆ 各类冷门函数细解
[软件笔记·I] 各类冷门函数细解 ■题外话■ 总觉得作为一个志向远大的 coder (٩(◕‿◕。)۶),我觉得单单只会做题是不够的所以我开始尝试自己编写软件!初入道的我并不知道C++其实并不太适合 ...
- RabbitMQ安装---rpm安装
首先介绍一下个人的安装环境是Linux-centos7: 一.安装和配置rabbitmq的准备工作: 下载erlang: wget http://www.rabbitmq.com/release ...
- (三)、python运算符和基本数据类型
运算符 1.算数运算: 2.比较运算: 3.赋值运算: 4.逻辑运算: 5.成员运算: 基本数据类型 1.数字 int(整形) # python3里不管数字有多长都叫整形# python2里分为整形和 ...
- C#爬虫实践
忘了什么时候加的,iPad上的人人视频追剧了<我的天才女友>,没事的时候看了下,感觉还不错,进一步了解到原著那不勒斯四部曲,感觉视频进度有些慢,就想找找书看看,一时没找到[PS:购买实体书 ...
- JAVA / MySql 编程—— 第四章 高级查询(二)
1. EXISTS和NOT EXISTS子查询:EXISTS关键字用来检测数数据库对象是否存在. ★EXISTS和NOT EXISTS的结果只取决于是否 ...
- 什么是web语义化?
Web语义化:是指使用语义恰当的标签,使页面有良好的结构,页面元素更有含义,能够让人和搜索引擎都容易理解.使团队项目的可持续运作及维护,去掉样式后页面呈现清晰的结构. 例如:<table> ...
- Linux系统Mini版配置相关
一:修改ip 编辑:vi /etc/sysconfig/network-sc/ifcfg-eth0 配置如下图:
- Leetcode 653. 两数之和 IV - 输入 BST
题目链接 https://leetcode.com/problems/two-sum-iv-input-is-a-bst/description/ 题目描述 给定一个二叉搜索树和一个目标结果,如果 B ...