• 题意: 给一棵树,每次查询u到v路径上有多少不同的点权

首先需要证明这类题目符合区间加减性质

摘选一段vfk大牛的证明

用S(v, u)代表 v到u的路径上的结点的集合。

用root来代表根结点,用lca(v, u)来代表v、u的最近公共祖先。

那么S(v, u) = S(root, v) xor S(root, u) xor lca(v, u)

其中xor是集合的对称差。

简单来说就是节点出现两次消掉。

lca很讨厌,于是再定义

T(v, u) = S(root, v) xor S(root, u)

观察将curV移动到targetV前后T(curV, curU)变化:

T(curV, curU) = S(root, curV) xor S(root, curU)

T(targetV, curU) = S(root, targetV) xor S(root, curU)

取对称差:

T(curV, curU) xor T(targetV, curU)= (S(root, curV) xor S(root, curU)) xor (S(root, targetV) xor S(root, curU))

由于对称差的交换律、结合律:

T(curV, curU) xor T(targetV, curU)= S(root, curV) xorS(root, targetV)

两边同时xor T(curV, curU):

T(targetV, curU)= T(curV, curU) xor S(root, curV) xor S(root, targetV)

发现最后两项很爽……哇哈哈

T(targetV, curU)= T(curV, curU) xor T(curV, targetV)

(有公式恐惧症的不要走啊 T_T)

也就是说,更新的时候,xor T(curV, targetV)就行了。

即,对curV到targetV路径(除开lca(curV, targetV))上的结点,将它们的存在性取反即可

其实也就是说对于先前位置(preu,prev) 和当前位置 已知T(preu,prev) 可以很方便的计算T(curu,curv)

具体做法如下

求出T(preu,curu) 和 T(prev,curv) 暴力遍历两点之间路径即可

此时T(curu,curv) = T(preu,prev) xor T(preu,curu) xor T(prev,curv)

S(curu,curv) = T(curu,curv) xot lca(curu,curv)


下面考虑如何对树上序列进行分块了

有两种方法

  • 第一种方法:dfs的时候对每个点记录 进栈时间戳f(x) 和 出栈时间戳g(x),得到一个2n的序列
  • 对于查询(x,y) 令f(x) < f(y)
  • 如果 x 是 y 的祖先,考虑从x向下走到y 即区间[f(x) , f(y)]

    显然除了x到y路径上的点 之外 其他在区间[f(x),f(y)]出现的点都出现了两次
  • 如果x 不是 y 的祖先,那么必然是先往上走 再往下,即区间[g(x),f(y)] 再加上lca(x,y)
  • 第二种方法: 考虑对树上关键点的划分,详情见分块有关论文,证明我也没太看懂,大概的理解就是把一些距离相近的点划分成一块,减少块与块之间需要跨越的距离。

第一种方法 序列长度为2n 看起来常数似乎比第二种要大,而且每个点记录两次处理起来麻烦一点,所以我用的是第二种

#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
int col[N],vis[N],cnt[N];
int pos[N],dfn[N];
int head[N],EN,tot;
int n , m, Siz;
inline void read(int &x){
char c = getchar();
x = 0;
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - 48,c = getchar();
}
struct Q{
int l , r, id, b;
int x , y;
Q(){};
bool operator < (const Q&rhs)const{
if(b == rhs.b) return dfn[r] < dfn[rhs.r];///左端点先按块排序,再右端点按时间戳排序
return b < rhs.b;
}
}q[N]; int ans[N] , res; struct edge{
int v,nxt;
edge(){};
edge(int v,int nxt):v(v),nxt(nxt){};
}e[N]; void add(int u,int v){
e[EN] = edge(v,head[u]);
head[u] = EN++;
} int f[N][22],dep[N];
int lca(int u,int v){
if(dep[u] < dep[v]) swap(u,v);
int d = dep[u] - dep[v];
for(int i = 0;i <= 20;i++)
if((1<<i) & d) u = f[u][i];
if(u == v) return u;
for(int i = 20;i >= 0;i--)
if(f[u][i] != f[v][i]) u = f[u][i],v = f[v][i];
return f[u][0];
}
int stk[N],top,b_cnt; int dfs(int u,int fa,int d){
for(int i = 1;i <= 20;i++) f[u][i] = f[f[u][i-1]][i-1];
dep[u] = d;
dfn[u] = tot++;
int siz = 0;
for(int i = head[u];~i;i = e[i].nxt){
if(i == fa) continue;
int v = e[i].v;
f[v][0] = u;
siz += dfs(v,i ^ 1,d + 1);
if(siz >= Siz){
while(siz--) pos[stk[top--]] = b_cnt;
b_cnt++;
}
}
stk[++top] = u;
return siz + 1;
}
void init(){
memset(head,-1,sizeof(head));
b_cnt = top = EN = tot = 0;
}
inline void up(int u){
if(!vis[u]) {
if(++cnt[col[u]] == 1) res++;
vis[u] = 1;
}else{
vis[u] = 0;
if(--cnt[col[u]] == 0) res--;
}
}
inline void work(int u,int v){
while(u != v){
if(dep[u] < dep[v]) swap(u,v);
up(u),u = f[u][0];
}
}
map<int,int> mp;
int ID;
/*
8 2
1000000000000 2 9 3 8 5 1000001 1000001
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5
7 8
*/
int main(){ read(n),read(m);
ID = 1;mp.clear();
for(int i = 1;i <= n;i++) {
read(col[i]);
if(!mp[col[i]]) mp[col[i]] = ID++;
col[i] = mp[col[i]];
}
init();
int rt = 0;
for(int i = 1;i < n;i++){
int u , v;
read(u),read(v);
if(!u) rt = v;
else if(!v) rt = u;
else add(u,v),add(v,u);
}
Siz = sqrt(n + 0.5);
dfs(1,-1,1);
while(top) pos[stk[top--]] = b_cnt; for(int i = 0;i < m;i++){
read(q[i].l),read(q[i].r);//read(q[i].x),read(q[i].y);
if(dfn[q[i].l] > dfn[q[i].r]) swap(q[i].l,q[i].r);
q[i].id = i;
q[i].b = pos[q[i].l];
}
sort(q,q + m);
memset(vis,0,sizeof(vis));
memset(cnt,0,sizeof(cnt));
res = 0;
int LCA = lca(q[0].l,q[0].r);
work(q[0].l,q[0].r);
up(LCA);
ans[q[0].id] = res;
up(LCA);
for(int i = 1;i < m;i++){
work(q[i-1].l,q[i].l);
work(q[i-1].r,q[i].r);
LCA = lca(q[i].l,q[i].r);
up(LCA);
ans[q[i].id] = res;
up(LCA);
}
for(int i = 0;i < m;i++) printf("%d\n",ans[i]);
return 0;
}

树上莫队 SPOJ COT2的更多相关文章

  1. SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)

    COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from  ...

  2. spoj COT2 - Count on a tree II 树上莫队

    题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的,  受益匪浅.. #include <iostream> #include < ...

  3. spoj COT2(树上莫队)

    模板.树上莫队的分块就是按dfn分,然后区间之间转移时注意一下就好.有个图方便理解http://blog.csdn.net/thy_asdf/article/details/47377709: #in ...

  4. 「日常训练&知识学习」莫队算法(二):树上莫队(Count on a tree II,SPOJ COT2)

    题意与分析 题意是这样的,给定一颗节点有权值的树,然后给若干个询问,每次询问让你找出一条链上有多少个不同权值. 写这题之前要参看我的三个blog:Codeforces Round #326 Div. ...

  5. SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)

    题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...

  6. 【SPOJ】Count On A Tree II(树上莫队)

    [SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...

  7. COT2 - Count on a tree II(树上莫队)

    COT2 - Count on a tree II You are given a tree with N nodes. The tree nodes are numbered from 1 to N ...

  8. SP10707 COT2 - Count on a tree II (树上莫队)

    大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...

  9. [SPOJ]Count on a tree II(树上莫队)

    树上莫队模板题. 使用欧拉序将树上路径转化为普通区间. 之后莫队维护即可.不要忘记特判LCA #include<iostream> #include<cstdio> #incl ...

随机推荐

  1. Session的生命同期

    一.什么是Session,怎么用 Session是存放用户与web服务器之间的会话,即服务器为浏览器开辟的存储空间. 由于浏览器与服务器之间的会话是无状态(无状态的意思是会话之间无关联性,无法识别该用 ...

  2. tcl之控制流-while

  3. MyFirstDay(附6篇python亲历面试题)

    一直以来都是在看别人写的内容,学习前辈们的经验,总感觉自己好像没有什么值得拿出来分享和交流的知识,最近在准备换工作(python后端开发),坐标上海,2019年3月,半个月面了6家(感觉效率是真不高. ...

  4. JS简写

    本文来源于多年的 JavaScript 编码技术经验,适合所有正在使用 JavaScript 编程的开发人员阅读. 本文的目的在于帮助大家更加熟练的运用 JavaScript 语言来进行开发工作. 文 ...

  5. 14,vue+uwsgi+nginx部署路飞学城

    有一天,老男孩的苑日天给我发来了两个神秘代码,听说是和mjj的结晶 超哥将这两个代码,放到了一个网站上,大家可以自行下载 路飞学城django代码 https://files.cnblogs.com/ ...

  6. 通过Aspose.Word和ZXING生成复杂的WORD表格

    1.前言 这是我之前做的一个项目中要求的功能模块,它的需求是生成一个WORD文档,需要每页一个表格并且表格中需要插入文字.条形码和二维码等信息,页数可控制.具体的效果如下图所示: 可以看到有以下几点是 ...

  7. Unity Occlusion Culling 遮挡剔除研究

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52684127 作者:car ...

  8. NPM安装vue-cli,并创建vue+webpack项目模板

    1.安装npm npm 是node.js 的包管理工具, 安装流程地址:https://docs.npmjs.com/cli/install  估计会非常慢,我们可以使用淘宝NPM镜像下载安装:htt ...

  9. Avril Lavigne : Everybody Hurts (Ver3)

    http://www.guitartabsexplorer.com/ http://www.guitartabsexplorer.com/lavigne-avril-Tabs/everybody-hu ...

  10. 《Cracking the Coding Interview》——第4章:树和图——题目1

    2014-03-19 03:30 题目:判断一个二叉树是否为平衡二叉树,即左右子树高度相差不超过1. 解法:递归算高度并判断即可. 代码: // 4.1 Implement an algorithm ...