[AGC011E] Increasing Numbers [数学]
题面
思路
首先,我们观察一下上升数的性质
可以发现,它一定可以表示为最多9个全是1的数字的和
那么我们设$N$可以被表示成$k$个上升数的和,同时我们设$p_i=\underbrace{111\cdots 11}_{i}$
我们令$a_{i,j}$表示构成$N$的第$I$个上升数的第$j$个全1数的位数
那么可以写出这样的式子
$N=\sum_{i=1}k\sum_{j=1}9 p_{a[i][j]}$
我们发现,$p_{i,j}$这样子摆在这里非常不好操作,那么我们继续观察$p_i$的性质,发现:
$p_i=\frac{10^i - 1}{9}$
所以上式可以写成:
$N=\sum_{i=1}k\sum_{j=1}9 \frac{10^{a[i][j]}-1}{9}$
我们把9乘过去,再把右边的$9k$个1加过去,得到:
$9N+9k=\sum_{i=1}k\sum_{j=1}910^{a[i][j]}$
我们发现:右边这个东西,如果在所有的10的幂加起来的过程中,能够不进位的话,那么它的数位和一定是9k
如果它发生了进位,因为1次进位一定是-10+1,总数位和-9,而9k是9的倍数,所以这个东西的数位和一定是一个小于9k的9的倍数
再看左边,我们发现,实际上我们需要满足的就是$9N+9k$的数位和小于9k且是9的倍数,而$9N+9k$一定是9的倍数
所以我们只需要求出最小的$k$,使得$9N+9k$的数位和小于等于$9k$即可
由数学归纳法不难证明,本题中$k\leq len(N)$,所以我们只需要枚举$k=1\cdots 5e5$,只要维护一个高精度+即可,复杂度是担此操作均摊$O(1)$,总复杂度$O(n)$
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[1000010];int a[1000010];
int main(){
scanf("%s",s);int n=strlen(s),i,j,sum=0,k;
for(i=1;i<=n;i++) a[i]=(s[n-i]-'0')*9;
for(i=1;i<=n;i++){
a[i+1]+=a[i]/10;a[i]%=10;
}
if(a[n+1]) n++;
for(i=1;i<=n;i++) sum+=a[i];
for(k=1;k<=n*10;k++){
a[1]+=9;sum+=9;
j=1;
while(j<=n){
if(a[j]<10) break;
sum-=10;a[j]-=10;
sum++;a[j+1]++;
j++;
if(j==n&&a[j+1]) n++;//别忘了有可能加一位
}
if(sum<=9*k){//注意这里一定不要写成等于了
printf("%d\n",k);return 0;
}
}
}
[AGC011E] Increasing Numbers [数学]的更多相关文章
- [agc011e]increasing numbers
题意: 如果一个十进制非负整数的所有数位从高位到低位是不减的,我们称它为“上升数”,例如1558,11,3,0都是上升数,而10,20170312则不是: 给定整数N,求最小的k使得N能被表示为k个上 ...
- AGC011-E Increasing Numbers
题意 给定一个数\(n\),\(n≤10^{500,000}\),问\(n\)最少可以拆分成几个不降数的和.一个不降数是在十进制位下,从高位往低位看,每个数都不会比高位的数更小的数 做法 不降数可以拆 ...
- UVA 11582 Colossal Fibonacci Numbers(数学)
Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...
- POJ 3252 Round Numbers 数学题解
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- HDU 6659 Acesrc and Good Numbers (数学 思维)
2019 杭电多校 8 1003 题目链接:HDU 6659 比赛链接:2019 Multi-University Training Contest 8 Problem Description Ace ...
- UVA 11481 - Arrange the Numbers 数学
Consider this sequence {1, 2, 3, . . . , N}, as a initial sequence of first N natural numbers. You ca ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
- CF385C Bear and Prime Numbers 数学
题意翻译 给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和. 题目描述 Recently, the be ...
- SGU 169 numbers 数学
169.Numbers Let us call P(n) - the product of all digits of number n (in decimal notation). For exam ...
随机推荐
- docker简介以及优缺点
1.docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制, ...
- php-5.6.26源代码 - opcode处理器,“函数调用opcode”处理器,如何调用扩展模块的函数
// opcode处理器 --- ZEND_DO_FCALL_SPEC_CONST_HANDLER实现在 php-5.6.26\Zend\zend_vm_execute.h static int ZE ...
- js三目运算符执行多个条件
三元运算符的结果语句可以执行多个操作,每个操作用逗号分隔就可以,例子如下: var a=1: a>5?(alert(1),alert(2)):(alert(3),alert(4))
- 华为模拟器ensp代码错误2,41,40问题的解决
win8+ensp320 ensp这是个神奇的软件,问题竟然出现的这么莫名其妙..前一秒还是好的时候,后一秒就立马出现了问题.不过不要慌...沉住气,把这篇文章看下去. 博主从昨天开始,ensp神奇的 ...
- 笔记-reactor pattern
笔记-reactor pattern 1. reactor模式 1.1. 什么是reactor模式 The reactor design pattern is an event han ...
- Hihocoder 1275 扫地机器人 计算几何
题意: 有一个房间的形状是多边形,而且每条边都平行于坐标轴,按顺时针给出多边形的顶点坐标 还有一个正方形的扫地机器人,机器人只可以上下左右移动,不可以旋转 问机器人移动的区域能不能覆盖整个房间 分析: ...
- latex排版系统
proTeXt - MiKTeX-based distribution for Windows proTeXt aims to be an easy-to-install TeX distributi ...
- 论如何入门地使用vscode
微软大法好啊 这货更像是个gedit 以下内容只适合Oiers使用 本文档只适合新手引导的阶段使用 下载 这个是链接 可见这东西是和Emacs一样跨系统的 不知道为什么下载速度贼快 配置 还记得我们用 ...
- laravel5.5队列
目录 简单实例 1. 简介和配置 1.1 好处 1.2 配置文件 1.3 队列驱动的必要配置 2. 创建任务 2.1 生成任务类 2.2 修改任务类 2.3 分发任务 2.4 自定义队列 & ...
- Kafka实践、升级和新版本(0.10)特性预研
本文来自于网易云社区 一.消息总线MQ和Kafka (挡在请求的第一线) 1. 几个应用场景 case a:上游系统往下游系统推送消息,而不关心处理结果: case b:一份新数据生成,需要实时保存到 ...