[AGC011E] Increasing Numbers [数学]
题面
思路
首先,我们观察一下上升数的性质
可以发现,它一定可以表示为最多9个全是1的数字的和
那么我们设$N$可以被表示成$k$个上升数的和,同时我们设$p_i=\underbrace{111\cdots 11}_{i}$
我们令$a_{i,j}$表示构成$N$的第$I$个上升数的第$j$个全1数的位数
那么可以写出这样的式子
$N=\sum_{i=1}k\sum_{j=1}9 p_{a[i][j]}$
我们发现,$p_{i,j}$这样子摆在这里非常不好操作,那么我们继续观察$p_i$的性质,发现:
$p_i=\frac{10^i - 1}{9}$
所以上式可以写成:
$N=\sum_{i=1}k\sum_{j=1}9 \frac{10^{a[i][j]}-1}{9}$
我们把9乘过去,再把右边的$9k$个1加过去,得到:
$9N+9k=\sum_{i=1}k\sum_{j=1}910^{a[i][j]}$
我们发现:右边这个东西,如果在所有的10的幂加起来的过程中,能够不进位的话,那么它的数位和一定是9k
如果它发生了进位,因为1次进位一定是-10+1,总数位和-9,而9k是9的倍数,所以这个东西的数位和一定是一个小于9k的9的倍数
再看左边,我们发现,实际上我们需要满足的就是$9N+9k$的数位和小于9k且是9的倍数,而$9N+9k$一定是9的倍数
所以我们只需要求出最小的$k$,使得$9N+9k$的数位和小于等于$9k$即可
由数学归纳法不难证明,本题中$k\leq len(N)$,所以我们只需要枚举$k=1\cdots 5e5$,只要维护一个高精度+即可,复杂度是担此操作均摊$O(1)$,总复杂度$O(n)$
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[1000010];int a[1000010];
int main(){
scanf("%s",s);int n=strlen(s),i,j,sum=0,k;
for(i=1;i<=n;i++) a[i]=(s[n-i]-'0')*9;
for(i=1;i<=n;i++){
a[i+1]+=a[i]/10;a[i]%=10;
}
if(a[n+1]) n++;
for(i=1;i<=n;i++) sum+=a[i];
for(k=1;k<=n*10;k++){
a[1]+=9;sum+=9;
j=1;
while(j<=n){
if(a[j]<10) break;
sum-=10;a[j]-=10;
sum++;a[j+1]++;
j++;
if(j==n&&a[j+1]) n++;//别忘了有可能加一位
}
if(sum<=9*k){//注意这里一定不要写成等于了
printf("%d\n",k);return 0;
}
}
}
[AGC011E] Increasing Numbers [数学]的更多相关文章
- [agc011e]increasing numbers
题意: 如果一个十进制非负整数的所有数位从高位到低位是不减的,我们称它为“上升数”,例如1558,11,3,0都是上升数,而10,20170312则不是: 给定整数N,求最小的k使得N能被表示为k个上 ...
- AGC011-E Increasing Numbers
题意 给定一个数\(n\),\(n≤10^{500,000}\),问\(n\)最少可以拆分成几个不降数的和.一个不降数是在十进制位下,从高位往低位看,每个数都不会比高位的数更小的数 做法 不降数可以拆 ...
- UVA 11582 Colossal Fibonacci Numbers(数学)
Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...
- POJ 3252 Round Numbers 数学题解
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- HDU 6659 Acesrc and Good Numbers (数学 思维)
2019 杭电多校 8 1003 题目链接:HDU 6659 比赛链接:2019 Multi-University Training Contest 8 Problem Description Ace ...
- UVA 11481 - Arrange the Numbers 数学
Consider this sequence {1, 2, 3, . . . , N}, as a initial sequence of first N natural numbers. You ca ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
- CF385C Bear and Prime Numbers 数学
题意翻译 给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和. 题目描述 Recently, the be ...
- SGU 169 numbers 数学
169.Numbers Let us call P(n) - the product of all digits of number n (in decimal notation). For exam ...
随机推荐
- avalon ms-repeat avalon1
工作原因要用到avalon二次开发, 但是看了下以前的avalon版本是1,现在大多数都是2版本了吧,,所以很多文档不好找,但是大多数还是好用的 ms-repeat 循环当前赋值的, ms-repea ...
- egg的使用方法
1.controller const {ctx,service} = this: let id = ctx.query.id // 获取GET的参数 let body = ctx.request.bo ...
- ubuntu built-in display 产生的一个原因
在没有禁用开源的显卡驱动 nouveau 下,从 apt 安装了nvidia的驱动,导致了后面开机后,系统不能正确的识别到显示器,整个界面分辨率变的非常小,在设置菜单中的显示设置中也不能调节分辨率,并 ...
- ethereum(以太坊)(一)
从这周开始,开始学习以太坊开发--solidity,开始决定往区块链方向发展,毕竟区块链技术应用广泛.一开始接触solidity开发语言不太习惯,毕竟一直在学习python语法,有很多都不能接受.有难 ...
- tcl之控制流-条件运算、条件测试、逻辑表达
- 数据分析处理库Pandas——对象操作
Series结构 索引 修改 旧数据赋值给新数据,旧数据不变. 对某一数值进行修改,可以选择保留修改前或修改后的数值. 替换索引 修改某一个索引 添加 在数据1后添加数据2,数据1不改变. 添加一个数 ...
- 关于Java对象作为参数传递是传值还是传引用的问题
前言 在Java中,当对象作为参数传递时,究竟传递的是对象的值,还是对象的引用,这是一个饱受争议的话题.若传的是值,那么函数接收的只是实参的一个副本,函数对形参的操作并不会对实参产生影响:若传的是引用 ...
- sed命令例子详解
sed -e '/Patricia/h' -e '/Margot/x' datafile 包含Margot的行将被包含Patricia的行替换: sed -e /WE/{h;d;}' -e '/CT/ ...
- Android 程序中获取一个反向 Shell
代码如下: String command = "ls -al /"; Process process = Runtime.getRuntime().exec(command); 之 ...
- TouTiao开源项目 分析笔记18 视频详情页面
1.效果预览 1.1.需要做到的真实效果 1.2.触发的点击事件 在MediaArticleVideoViewBinder的每一个item点击事件中: VideoContentActivity.lau ...