Luogu 1641 [SCOI2010]生成字符串
结果和dp没有一点关系……
30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$。
100分算法:
把已经选了的$0$的个数和$1$的个数和看作$x$轴,已经选了个$1$的个数和$0$的个数的差看作$y$轴,就相当于每一步可以向右上或者是右下走一步,最后要到达$(n + m, n - m)$的方案数。
可以发现就相当于在$n + m$步中选出$m$步向右下走的方案数$\binom{n + m}{m}$。
考虑一下限制条件,其实就相当于不经过$y = -1$这条线。根据对称性,从$(0, 0)$开始经过$y = -1$到达$(n + m, n - m)$的方案数就相当于从$(0, -2)$出发,相当于在$n + m$步中选择$m - 1$步中向下走,所以不合法的方案数有$\binom{n + m}{m - 1}$个。
最后的答案就是两个组合数相减。
其中阶乘和阶乘的逆元可以$O(n)$预处理。
时间复杂度$O(n)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e6 + ;
const ll P = 20100403LL; int n, m;
ll fac[N], inv[N]; inline ll pow(ll a, ll b) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} inline ll getC(int a, int b) {
return fac[a] * inv[b] % P * inv[a - b] % P;
} int main() {
scanf("%d%d", &n, &m); fac[] = 1LL;
for(int i = ; i <= n + m; i++) fac[i] = 1LL * i * fac[i - ] % P;
inv[n + m] = pow(fac[n + m], P - );
for(int i = n + m - ; i >= ; i--) inv[i] = 1LL * inv[i + ] * (i + ) % P; printf("%lld\n", (getC(n + m, m) - getC(n + m, m - ) + P) % P);
return ;
}
Luogu 1641 [SCOI2010]生成字符串的更多相关文章
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
- 洛谷 1641 [SCOI2010]生成字符串
题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...
- luogu P1641 [SCOI2010]生成字符串
传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...
- Luogu P1641 [SCOI2010]生成字符串 组合数学
神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
随机推荐
- hdu4451 Dressing(容斥原理)
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inc ...
- linux 下安装rar解压
在liunx下原本是不支持rar文件的,需要安装liunx下的winrar版本,操作如下 wget http://www.rarsoft.com/rar/rarlinux-4.0.1.tar.gz t ...
- file_put_contents();
file_put_contents(); 用于获取文件中的内容,可以填写网址,但是需要以http://开头
- NOI模拟赛 #4
好像只有一个串串题可以做... 不会 dp 和数据结构啊 QAQ 10 + 20 + 100 = 130 T1 一棵树,每个点有一个能量的最大容量 $l_i$ 和一个增长速度 $v_i$,每次可以选一 ...
- WPF之ContextMenu的命定绑定
在WPF中右击菜单项的XMAL代码是: <ContextMenu x:Key="sampleContextMenu"> <MenuItem Header=&quo ...
- kafka集群下线broker节点实践方法(broker topic 迁移)
[root@es03 ~]# cd /usr/hdp//kafka/bin [root@es03 kafka]# cd bi -bash: cd: bi: No such file or direct ...
- secret CRT 会话光标不闪烁问题
点击 选项->会话选项 然后在取消即可,就有了闪烁的光标,应该是个bug.
- BZOJ1370:[Baltic2003]团伙
浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...
- Qt中如何用QImage::Format_Indexed8表示灰度图
QImage *qi = new QImage(data_ptr, width, height, QImage::Format_Indexed8); QVector<QRgb> grayT ...
- Day2-VIM(四):修改
字符替换 r 单个字符替换 R 连续替换 - 更改大小写 很简单,多试试就行了 tips:4-更改连续4个字符的大小写,很有意思 单词修改 cw 从光标处修改到单词结尾 cb 从光标处修改到单词开头 ...