结果和dp没有一点关系……

30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$。

100分算法:

大神讲的好

把已经选了的$0$的个数和$1$的个数和看作$x$轴,已经选了个$1$的个数和$0$的个数的差看作$y$轴,就相当于每一步可以向右上或者是右下走一步,最后要到达$(n + m, n - m)$的方案数。

可以发现就相当于在$n + m$步中选出$m$步向右下走的方案数$\binom{n + m}{m}$。

考虑一下限制条件,其实就相当于不经过$y = -1$这条线。根据对称性,从$(0, 0)$开始经过$y = -1$到达$(n + m, n - m)$的方案数就相当于从$(0, -2)$出发,相当于在$n + m$步中选择$m - 1$步中向下走,所以不合法的方案数有$\binom{n + m}{m - 1}$个。

最后的答案就是两个组合数相减。

其中阶乘和阶乘的逆元可以$O(n)$预处理。

时间复杂度$O(n)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e6 + ;
const ll P = 20100403LL; int n, m;
ll fac[N], inv[N]; inline ll pow(ll a, ll b) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} inline ll getC(int a, int b) {
return fac[a] * inv[b] % P * inv[a - b] % P;
} int main() {
scanf("%d%d", &n, &m); fac[] = 1LL;
for(int i = ; i <= n + m; i++) fac[i] = 1LL * i * fac[i - ] % P;
inv[n + m] = pow(fac[n + m], P - );
for(int i = n + m - ; i >= ; i--) inv[i] = 1LL * inv[i + ] * (i + ) % P; printf("%lld\n", (getC(n + m, m) - getC(n + m, m - ) + P) % P);
return ;
}

Luogu 1641 [SCOI2010]生成字符串的更多相关文章

  1. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  2. BZOJ1856或洛谷1641 [SCOI2010]生成字符串

    BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...

  3. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  4. luogu P1641 [SCOI2010]生成字符串

    传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...

  5. Luogu P1641 [SCOI2010]生成字符串 组合数学

    神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  8. [SCOI2010]生成字符串

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  9. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

随机推荐

  1. KVM- 存储池配置

    1.创建基于文件夹的存储池(目录) [root@kvm_1 ~]# mkdir -p /data/vmfs 2.定义存储池与其目录 [root@kvm_1 ~]# virsh pool-define- ...

  2. Microsoft Visual Studio 2012 Update 4 RC 3 离线安装程序

    Microsoft Visual Studio 2012 Update 4 RC 3 离线安装程序 ☆ 微软官网地址:☆ http://www.microsoft.com/en-us/download ...

  3. 剑指offer--15.把字符串转换成整数

    stringstream做这个真的很舒服 ------------------------------------------------------------------------------- ...

  4. New Concept English three (46)

    27w/m 66 error So great is our passion for doing things for ourselves, that we are becoming increasi ...

  5. 利用HTML5开发Android笔记(下篇)

    资源来自于www.mhtml5.com 杨丰盛老师成都场的PPT分享 一个很简明的demo 可以作为入门基础 学习的过程中做了点笔记 整理如下 虽然内容比较简单 但是数量还是比较多的 所以分了3篇 ( ...

  6. mvc那些事

    mvc的特点: 1.无控件,有HtmlHelper类,此类提供了各种生成html控件的方法.如果不能满足需要,就自定义扩展吧,比如说分页显示.HtmlHelper类提供了Partial(加载局部视图) ...

  7. java-04类和对象课堂练习

    1.请运行并输入以下代码,得到什么结果 public class Test { public static void main(String[] args){ Foo obj1=new Foo(); ...

  8. Bender Problem

    Robot Bender decided to make Fray a birthday present. He drove n nails and numbered them from 1 to n ...

  9. CountDownLatch和cyclicbarrier的使用

    CountDownLatch: 一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. 用给定的计数初始化 CountDownLatch.由于调用了 countDown ...

  10. JAVA中数值的表示

    1.Java中用补码形式表示 2.第一位正负位,1表示负,0表示正. 3.原码:一个数的二进制表示.                  3的原码00000011   -3的 原码 10000011 4 ...