出处:http://www.ithao123.cn/content-242299.html
情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。
 
原理
比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”
① 情感词
要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。
里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。
② 程度词
“好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值*4,”较“,”还算“就情感分值*2,”只算“,”仅仅“这些就*0.5了。那么这句话的情感分值就是:4*1+1*2-1*4+1=3
③ 感叹号
可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:4*1+1*2-1*4-2+1 = 1
④ 否定词
明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就*-1,但如果是偶数,那情感就没有反转,还是*1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,*-1。
因此这句话的准确情感分值是:4*1+1*2-1*4-2+1*-1 = -1
⑤ 积极和消极分开来
再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7“
⑥ 以分句的情感为基础
再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]] 
以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。
 
算法设计
第一步:读取评论数据,对评论进行分句。
第二步:查找对分句的情感词,记录积极还是消极,以及位置。
第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。
第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。
第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。
第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。
第七步:计算并记录所有评论的情感值。
第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。
 
实战
这篇文章讲到了使用情感词典进行英文情感分析的方法和代码讲解,非常详细。
但我使用了与之有所区别的方法和数据类型(我没有使用字典,而只是用了列表。或许字典能记录下更多信息,方便更复杂 的处理,但简单的处理使用列表就足够了)。
1. 载入几个需要用的库。pickle(读取存储的情感词典数据),numpy(计算均值方差等),自己编写的textprocessing库(包括取excel数据、取txt数据、分词、词性标注、分句、去停用词、计算文本相似度等功能)。

#! /usr/bin/env python2.7
#coding=utf-8

import pickle
import textprocessing as tp
import numpy as np

2. 载入情感词典。

posdict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/posdict.pkl', 'r'))
negdict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/negdict.pkl', 'r'))
mostdict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/mostdict.pkl', 'r'))
verydict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/verydict.pkl', 'r'))
moredict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/moredict.pkl', 'r'))
ishdict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/ishdict.pkl', 'r'))
insufficientdict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/insufficentdict.pkl', 'r'))
inversedict = pickle.load(open('D:/code/sentiment_test/sentiment_dictionary/inversedict.pkl', 'r'))

3. 载入评论数据。

review = pickle.load(open('D:/code/review_set/review_pkl/Motorala.pkl', 'r'))

4. 定义判断基数偶数的函数。在判断否定词时使用。

def judgeodd(num):
if (num/2)*2 == num:
return 'even'
else:
return 'odd'

5. 情感分值计算主程序。

def sentiment_score_list(dataset):
cuted_data = []
for cell in dataset:
cuted_data.append(tp.cut_sentence(cell))

count1 = []
count2 = []
for sents in cuted_data: #循环遍历每一个评论
for sent in sents: #循环遍历评论中的每一个分句
segtmp = tp.segmentation(sent, 'list') #把句子进行分词,以列表的形式返回
i = 0 #记录扫描到的词的位置
a = 0 #记录情感词的位置
poscount = 0 #积极词的第一次分值
poscount2 = 0 #积极词反转后的分值
poscount3 = 0 #积极词的最后分值(包括叹号的分值)
negcount = 0
negcount2 = 0
negcount3 = 0
for word in segtmp:
if word in posdict: #判断词语是否是情感词
poscount += 1
c = 0
for w in segtmp[a:i]: #扫描情感词前的程度词
if w in mostdict:
poscount *= 4.0
elif w in verydict:
poscount *= 3.0
elif w in moredict:
poscount *= 2.0
elif w in ishdict:
poscount /= 2.0
elif w in insufficientdict:
poscount /= 4.0
elif w in inversedict:
c += 1
if judgeodd(c) == 'odd': #扫描情感词前的否定词数
poscount *= -1.0
poscount2 += poscount
poscount = 0
poscount3 = poscount + poscount2 + poscount3
poscount2 = 0
else:
poscount3 = poscount + poscount2 + poscount3
poscount = 0
a = i + 1 #情感词的位置变化
elif word in negdict: #消极情感的分析,与上面一致
negcount += 1
d = 0
for w in segtmp[a:i]:
if w in mostdict:
negcount *= 4.0
elif w in verydict:
negcount *= 3.0
elif w in moredict:
negcount *= 2.0
elif w in ishdict:
negcount /= 2.0
elif w in insufficientdict:
negcount /= 4.0
elif w in inversedict:
d += 1
if judgeodd(d) == 'odd':
negcount *= -1.0
negcount2 += negcount
negcount = 0
negcount3 = negcount + negcount2 + negcount3
negcount2 = 0
else:
negcount3 = negcount + negcount2 + negcount3
negcount = 0
a = i + 1
elif word == '!'.decode('utf8') or word == '!'.decode('utf8'): ##判断句子是否有感叹号
for w2 in segtmp[::-1]: #扫描感叹号前的情感词,发现后权值+2,然后退出循环
if w2 in posdict or negdict:
poscount3 += 2
negcount3 += 2
break
i += 1 #扫描词位置前移

#以下是防止出现负数的情况
pos_count = 0
neg_count = 0
if poscount3 < 0 and negcount3 > 0:
neg_count += negcount3 - poscount3
pos_count = 0
elif negcount3 < 0 and poscount3 > 0:
pos_count = poscount3 - negcount3
neg_count = 0
elif poscount3 < 0 and negcount3 < 0:
neg_count = -poscount3
pos_count = -negcount3
else:
pos_count = poscount3
neg_count = negcount3

count1.append([pos_count, neg_count])
count2.append(count1)
count1 = []

return count2

6. 计算出所需的积极情感值,消极情感值,积极情感均值,消极情感均值,积极情感方差,消极情感方差。

def sentiment_score(senti_score_list):
score = []
for review in senti_score_list:
score_array = np.array(review)
Pos = np.sum(score_array[:,0])
Neg = np.sum(score_array[:,1])
AvgPos = np.mean(score_array[:,0])
AvgNeg = np.mean(score_array[:,1])
StdPos = np.std(score_array[:,0])
StdNeg = np.std(score_array[:,1])
score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
return score

7. 最后把分值写入txt 文件中即可。就不贴代码上来了。
 
 
画外音:耍流氓啊,讲了一整篇都没讲到情感词典在哪里,这不坑爹么!
不急不急,下一篇再讲。

Python 文本挖掘:使用情感词典进行情感分析(算法及程序设计)的更多相关文章

  1. 基于情感词典的python情感分析

    近期老师给我们安排了一个大作业,要求根据情感词典对微博语料进行情感分析.于是在网上狂找资料,看相关书籍,终于搞出了这个任务.现在做做笔记,总结一下本次的任务,同时也给遇到有同样需求的人,提供一点帮助. ...

  2. Python 爬取淘宝商品数据挖掘分析实战

    Python 爬取淘宝商品数据挖掘分析实战 项目内容 本案例选择>> 商品类目:沙发: 数量:共100页  4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 爬取淘宝商品 ...

  3. 理解 python metaclass使用技巧与应用场景分析

    理解python metaclass使用技巧与应用场景分析       参考: decorator与metaclass:http://jfine-python-classes.readthedocs. ...

  4. Python学习二:词典基础详解

    作者:NiceCui 本文谢绝转载,如需转载需征得作者本人同意,谢谢. 本文链接:http://www.cnblogs.com/NiceCui/p/7862377.html 邮箱:moyi@moyib ...

  5. HanLP用户自定义词典源码分析

    HanLP用户自定义词典源码分析 1. 官方文档及参考链接 关于词典问题Issue,首先参考:FAQ 自定义词典其实是基于规则的分词,它的用法参考这个issue 如果有些数量词.字母词需要分词,可参考 ...

  6. python实现归并排序,归并排序的详细分析

    python实现归并排序,归并排序的详细分析.   学习归并排序的过程是十分痛苦的.它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的.很多朋友不 ...

  7. Python --深入浅出Apriori关联分析算法(二) Apriori关联规则实战

    上一篇我们讲了关联分析的几个概念,支持度,置信度,提升度.以及如何利用Apriori算法高效地根据物品的支持度找出所有物品的频繁项集. Python --深入浅出Apriori关联分析算法(一) 这次 ...

  8. python导入csv文件出现SyntaxError问题分析

    python导入csv文件出现SyntaxError问题分析 先简单描述下碰到的题目,要求是写出2个print的结果 可以看到,a指向了一个列表list对象,在Python中,这样的赋值语句,其实内部 ...

  9. Python中的浮点数原理与运算分析

    Python中的浮点数原理与运算分析 本文实例讲述了Python中的浮点数原理与运算.分享给大家供大家参考,具体如下: 先看一个违反直觉的例子:     >>> s = 0. > ...

随机推荐

  1. GitHub webstorm 及 README.md 姿势

    README.md 语法格式: 规范的README文件开头都写上一个标题,这被称为大标题. 标题: #一级标题 ##二级标题 ###三级标题 ####四级标题 #####五级标题 ######六级标题 ...

  2. C++ Knowledge series 4

    Programming language evolves always along with Compiler's evolvement The Semantics of Function C++ s ...

  3. 多路复用select poll epoll

    I/O 多路复用之select.poll.epoll详解 select,poll,epoll都是IO多路复用的机制.I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般 ...

  4. IO文件操作

    × 目录 [1]IO文件的操作 [2]Directory类 [3]File类 [4]FileStream类 [5]文本文件的操作 一.IO文件的操作:   .net中对文件操作,经常会用到这样几个类: ...

  5. 新版mysql 5.7的group_by非常不和谐

    sqlalchemy.exc.OperationalError OperationalError: (_mysql_exceptions.OperationalError) (1055, " ...

  6. centreon-engine 性能调优

    http://documentation.centreon.com/docs/centreon-engine/en/latest/user/configuration/best_practice.ht ...

  7. 【转载】#344 - Hidden Base Class Member Is Invoked Based on Declared Type of Object

    When you use the new modifier to hide a base class method, it will still be called by objects whose ...

  8. framework7 1.3.5 路由跳转后DOM失效问题

    再这个版本的7会存在一个问题,那就是loadpage到指定页面后才做其中的DOM比如DIV里面的text或者HTML,虽然控制台会显示改变后的值但是页面上却还是原值,这时候需要改变方法使用reload ...

  9. Codeforces 760B Frodo and pillows

    题目链接:http://codeforces.com/problemset/problem/760/B 题意:n个床位,m个枕头,第k个位置最多有多少个枕头,其中相邻之间的差<=1; 第k个位置 ...

  10. c# base new 等关键字基础

    base关键字 不仅可以  调用父类的 实例方法,也能狗调用父类的 构造方法 https://www.cnblogs.com/aehyok/p/3519599.html