King Arthur's Birthday Celebration
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3575   Accepted: 1130

Description

King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. The luxurious celebration will start on his birthday and King Arthur decides to let fate tell when to stop it. Every day he will toss a coin which has probability p that it comes up heads and 1-p up tails. The celebration will be on going until the coin has come up heads for K times. Moreover, the king also decides to spend 1 thousand coins on the F[i]rst day's celebration, 3 thousand coins on the second day's, 5 thousand coins on the third day's ... The cost of next day will always be 2 thousand coins more than the previous one's. Can you tell the minister how many days the celebration is expected to last and how many coins the celebration is expected to cost?

Input

The input consists of several test cases. 
For every case, there is a line with an integer K ( 0 < K ≤ 1000 ) and a real number p (0.1 ≤ p ≤ 1). 
Input ends with a single zero.

Output

For each case, print two number -- the expected number of days and the expected number of coins (in thousand), with the fraction rounded to 3 decimal places.

Sample Input

1 1
1 0.5
0

Sample Output

1.000 1.000
2.000 6.000

Source

题意: 有一个富豪,他决定每天撒钱,并且抛硬币,第一天1块钱,第二天3块钱,第三天5块,直到他抛到硬币向上的数量为K。 求天数期望和钱期望。

思路

C[i]表示掷出了i枚正面朝上的硬币的期望次数,F[i]表示掷出了i枚正面朝上的硬币的期望费用。

C[i] = pC[i]-1 + (1-p)C[i] + 1   1表示抛出了第i枚硬币用去1次,如果是正面那么要到i枚正面硬币只需要再抛出C[i]-1次,如果是反面还需要再抛C[i]次。

F[i] = p(F[i]-1 + 2 * (C[i]-1+1) -1) + (1-p)(F[i] + 2 * (C[i]+1) -1)    第i枚硬币抛出,如果是正面,那么现在抛出的这枚就是第C[i]-1 + 1 枚,如果是反面,现在抛出的这枚就是第C[i] + 1 枚。

PS:C[i],F[i]的转移方程都需要移项。

代码:

 #include"bits/stdc++.h"

 #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff; db c[N];
db f[N];
int n;
db p;
int main()
{
while(scanf("%d%lf",&n,&p)==&&n)
{
c[]=f[]=;
for(int i=;i<=n;i++) c[i]=c[i-]+/p;
for(int i=;i<=n;i++) f[i]=(p*(f[i-]+*(c[i-]+)-)+(-p)*(*(c[i]+)-))/p;
printf("%.3f %.3f\n",c[n],f[n]);
}
return ;
}

POJ3682 概率DP的更多相关文章

  1. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  2. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  3. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  4. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  5. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

  6. hdu 4050 2011北京赛区网络赛K 概率dp ***

    题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...

  7. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  8. SGU 422 Fast Typing(概率DP)

    题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...

  9. HDU 4050 wolf5x(动态规划-概率DP)

    wolf5x Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. kafka brokers配置参数详解

    基本配置如下: -broker.id-log.dirs-zookeeper.connect Topic-level配置以及其默认值将在下面讨论. Property Default Descriptio ...

  2. Vue之组件间传值

    标签: Vue Vue之父子组件传值 父向子传递通过props 子向父传递通过$emit 演示地址 代码示例如下: <!DOCTYPE html> <html lang=" ...

  3. angular解决压缩问题,和传送数据

    1.angular解决压缩的方法 var app = angular.module("mk",[]); app.controller("ctrl",['$sco ...

  4. php-5.2.14 编译参数,成功的

    ./configure --prefix=/usr/local/php --with-config-file-path=/usr/bin --with-mysql=/usr/local/mysql - ...

  5. Shader笔记

    1,渲染队列值小的先渲染,值大的后渲染 2,zTest,zWrite zTest:LEqua zWrite:On 则:zWrite中,深度值小于深度值缓冲区的值会被通过 参考:http://www.c ...

  6. Swagger2:常用注解说明

    Swagger2常用注解说明 Spring Boot : Swagger 2使用教程:https://www.cnblogs.com/JealousGirl/p/swagger.html 这里只讲述@ ...

  7. MSSQL复制分发对异构数据库之间大容量数据分发造成异常

    由于历史遗留的问题,现有的架构中存在采用MSSQL的复制分发功能,从Oracle发布数据到MSSQL. 关于这项发布的实现原理,官方表述如下: Oracle 事务发布是通过使用 SQL Server ...

  8. JavaScript 数组排序(从大到小,从小到大)

    1.数组的从大到小排序 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...

  9. CODESOFT条码设计软件如何隐藏数据源方法

    作为强大的条码标签设计软件,用户在用CODESOFT设计条码标签时,有时需要根据实际情况,将条码数据源隐藏,也就是使设计与打印出来的条形码下不带有数据.那么这要怎么在CODESOFT中实现呢?下面,小 ...

  10. TP5.1:实现分页

    前提: (1)为了让分页变得更加好看,我的案例加载了bootstrap和jq的文件,具体操作请参考:http://www.cnblogs.com/finalanddistance/p/9033916. ...