一个exgcd解决一个线性同余问题,多个exgcd解决线性同余方程组。

Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 12001   Accepted: 3797

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ ik) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ ik).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 10100 long long a[N],r[N]; long long cal_axb(long long a,long long b,long long mod)
{
long long sum=;
while(b)
{
if(b&) sum=(sum+a)%mod;
b>>=;
a=(a+a)%mod;
}
return sum;
} // ax+by = gcd(a,b) ->求解x,y 其中a,b不全为0,可以为负数
// 复杂度:O(log2a)
void extendgcd(long long a,long long b,long long &x,long long &y)
{
if(a%b==)
{
//到了终止条件
x=; y=;
return ;
}
extendgcd(b,a%b,x,y);
long long tmpx;
tmpx=y;
y=x - (a/b)*y;
x=tmpx;
} long long Multi_ModX(long long m[],long long r[],int n)
{
long long m0,r0;
m0=m[]; r0=r[];
for(int i=;i<n;i++)
{
long long m1=m[i],r1=r[i];
long long tmpd=__gcd(m0,m1);
if( (r1 - r0)%tmpd!= ) return -;
long long k0,k1;
extendgcd(m0,m1,k0,k1);
k0 *= (r1-r0)/tmpd;
//k0会不会很大
m1 *= m0/tmpd;
r0 = (cal_axb(k0,m0,m1)+r0)%m1;
m0=m1;
}
return (r0%m0+m0)%m0;
} int main()
{
int k;
while(cin>>k)
{
for(int i=;i<k;i++)
cin>>a[i]>>r[i];
cout<<Multi_ModX(a,r,k)<<endl;
}
return ;
}

poj2891(线性同余方程组)的更多相关文章

  1. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

  2. HDU1573:X问题(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...

  3. HDU1573 X问题【一元线性同余方程组】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...

  4. AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡

    给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod  ...

  5. poj3708(公式化简+大数进制装换+线性同余方程组)

    刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相 ...

  6. POJ2891:Strange Way to Express Integers(解一元线性同余方程组)

    写一下自己的理解,下面附上转载的:若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)a-b=kt(t为整数)以前理解的错误思想:以前认为上面的形式+(a-tb=k)也是成立 ...

  7. hdu1573(线性同余方程组)

    套模板,因为要是正整数,所以处理一下x=0的情况. X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. POJ2891Strange Way to Express Integers (线性同余方程组)

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative ...

  9. HDU-1573-X问题(线性同余方程组)

    链接: https://vjudge.net/problem/HDU-1573 题意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1] ...

随机推荐

  1. 推荐一款Java反编译器,比较好用

    转自:http://www.blogjava.net/xmatthew/archive/2008/10/28/237203.html 推荐一款Java反编译器,也使用了挺久的了,感觉还是很好用,就拿出 ...

  2. mysql行转列,单列转多行

    行转列 使用CASE语句: SELECT SUM(CASE USER_NAME='A' THEN KILLS END) AS 'A', SUM(CASE USERNAME='B' THEN KILL ...

  3. POJ 2983-Is the Information Reliable?(差分约束系统)

    题目地址:POJ 2983 题意:有N个车站.给出一些点的精确信息和模糊信息.精确信息给出两点的位置和距离.模糊信息给出两点的位置.但距离大于等于一.试确定是否全部的信息满足条件. 思路:事实上就是让 ...

  4. ES的关键端口

    ElasticSearch的集群可自发现,只要配置相同的集群名称,默认为组播发现机制,默认情况下: http 端口:9200 需要打开给调用 数据传输端口:9300 用于集群之间交换数据 组播端口(U ...

  5. Linux学习之二十-Linux文件系统

    Linux文件系统 文件系统的定义 文件系统是操作系统的必备软件,文件系统是对一个存储设备上的数据(block)和元数据(inode)进行组织的一种机制.文件系统可以帮助用户管理磁盘空间,进行文件的快 ...

  6. 将 xml 文件 转为 DataTable

    private static DataTable CreateDataTable(string table) { DataSet dataSet = new DataSet(); string dat ...

  7. How to Check some table was locked

    select * from sys.sysprocesses where blocked<>0  看看waittime是不是很大  kill spid

  8. python 搭建环境

    直接命令行里面 1.进入相应的目录 ,然后python,然后python setup.py 2.或者直接python C:\Python27\Lib\site-packages\xlrd-0.9.3\ ...

  9. 【VBA】VBA编写的,将一列中相同的内容的行提取出来单独生成文件

    数据如上图所示,点击RUN后的运行结果如下: 得到该文件夹,文件夹内容如上图. 代码如下: Private Sub Command_OLIVER() Dim arr arr = Range(" ...

  10. 数据访问公共类(BaseProvider)

    using System; using System.Data; using System.Data.Common; using System.Configuration; using System. ...