洛谷 P1036 选数
嗯....
这种类型的题在新手村出现还是比较正常的,
但是不知道为什么它的分类竟然是过程函数与递归!!!(难道这不是一个深搜题吗???
好吧这就是一道深搜题,所以千万别被误导...
先看一下题目:https://www.luogu.org/problemnew/show/P1036
一道比较典型的深搜...
思路:
在n个数和每k个数这两个范围中进行搜索,然后看加起来的和是否为素数即可(详细的也不会说...注意边界条件为n个数全搜完和已经搜完k个数判断后... 大体过程:
主函数输入输出调用----->is_prime函数判断是否为素数------->深搜 下面是AC代码:
#include<cstdio>
#include<iostream>
#include<cmath> using namespace std; int x[], n, k, total;
inline bool is_prime(int x){
for(int i = ; i <= sqrt(x); i++)
if(x % i == ) return false;
return true;
} //筛素数 inline void dfs(int step, int sum, int cnt){
if(step == n + || cnt == k){ // 如果已经进行到了n+1次或者是已经有k个数,
if(is_prime(sum) && cnt == k)//判断选k个数后的和是否为素数
total++; // 方案+1
return;
}
dfs(step+, sum + x[step], cnt+);//继续搜索,选择下一个数
dfs(step+, sum, cnt);//继续枚举不选择下一个数的情况
return;
}//深搜
int main(){
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++){
scanf("%d", &x[i]);
}
dfs(, , );
printf("%d", total);
return ;
}
嗯... 关于深搜就是这样 ...
洛谷 P1036 选数的更多相关文章
- 【搜索】【入门】洛谷P1036 选数
题目描述 已知 n个整数x1,x2,…,xn,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- (水题)洛谷 - P1036 - 选数
https://www.luogu.org/problemnew/show/P1036 $n$ 才20的数据量,我当时居然还在想怎么分组组合,直接 $2^{20}$ 暴力搞就行了. $x_i $太大了 ...
- 洛谷P1036选数(素数+组合数)
题目链接:https://www.luogu.org/problemnew/show/P1036 主要考两个知识点:判断一个数是否为素数.从n个数中选出m个数的组合 判断一个数是否为素数: 素数一定是 ...
- 洛谷——P1036 选数
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
- 【洛谷P1036 选数】
这个题显然用到了深搜的内容 让我们跟着代码找思路 #include<bits/stdc++.h>//万能头 ],ans; inline bool prime(int n)//最简单的判定素 ...
- 洛谷 P1036 选数【背包型DFS/选or不选】
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
- 洛谷P1036.选数(DFS)
题目描述 已知 n个整数 x1,x2,-,xn,以及11个整数k(k<n).从n个整数中任选k个整数相加,可分别得到一系列的和.例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部 ...
- 洛谷P1036 选数
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
随机推荐
- 2016.1.1 VS中宏的使用技巧点滴
Dim selection As TextSelection = DTE.ActiveDocument.Selection'定义 TextSelection 对象 selection.StartOfL ...
- javascipt——对象的概念——数组
一.Array 特点: 数组的长度是可变的: 数组的索引可以是数字.字符串: 数组的内容可以是任意内容: 可以通过索引获取之前不存在的一个位置,其值为undefined: 1.构造函数: new Ar ...
- nginx 限制solr
server { listen 80; server_name bai.com www.bai.com; location /solr/ { allow 192.168.0.0/24; allow ...
- 【Android 多媒体应用】使用 VideoView 播放视频
1.MainActivity.java import android.os.Bundle; import android.support.v7.app.AppCompatActivity; impor ...
- C语言学习笔记--函数
1. C 语言中的函数 (1)函数的由来: 程序 = 数据 + 算法→C 程序 = 数据 + 函数 (2)模块化程序设计 (3)C 语言中的模块 2. 面向过程的程序设计 (1)面向过程是一种以过程为 ...
- 异常 android.content.res.Resources$NotFoundException: String resource ID #0x61
09-09 16:08:41.554: E/Weaver(13140):09-09 16:08:41.554: E/Weaver(13140): android.content.res.Resourc ...
- Composite模式 组合模式
Android的ViewGroup 和 View 的关系,即是采用组合模式 1. 概述 在数据结构里面,树结构是很重要,我们可以把树的结构应用到设计模式里面. 例子1:就是多级树形菜单. 例子2:文件 ...
- ORACLE体系结构一 (实例(instance))--ORACLE_SID
数据库实例(也称为服务器Server)就是用来访问一个数据库文件集的一个存储结构及后台进程的集合.它使一个单独的数据库可以被多个实例访问(也就是ORACLE并行服务器-- OPS).实例在操作系统中用 ...
- Python_pip_01_pip的相关操作
>Python中的pip是什么?能够做些什么? pip是Python中的一个进行包管理的东西,能够下载包.安装包.卸载包......一些列操作 >怎么查看pip的相关信息 在控制台输入: ...
- Spring_02 注入类型值、利用引用注入类型值、spring表达式、与类相关的注解、与依赖注入相关的注解、注解扫描
注意:注入基本类型值在本质上就是依赖注入,而且是利用的set方式进行的依赖注入 1 注入基本类型的值 <property name="基本类型的成员变量名" value=&q ...