传送门

题目大意

给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b

(埃及分数意思是分子为1的分数,详见百度百科

如果有多组解,则分数数量少的优先

如果分数数量一样则分母最大的要尽量小,如果最大的分母同样大,则第二大的分母尽量小,以此类推

为了加大难度,会给出k个不能作为分母的数

(2<=a,b<=876,k<=5 并且 a,b 互质)

首先想的是数论,但是呢

推不出来...

然后发现a,b好像不大

貌似可以搜索

但是呢

不知道上界...

那就迭代加深搜索呗

然后想想怎么剪枝

如果知道 a/b,要怎么求出最小 k 使 1/k < a/b 呢(注意符号)

易知 a/b 为真分数 ,a,b,k均为整数
所以 a<b
所以必定有整数 x,y 使得 x*a+y=b 且y<a
所以可得 int(b/a)=int( (x*a+y) /a )=int(x*a/a)+int(y/a) = x
因为 int(b/a)<=b/a,int(b/a)=x
所以 x+ > b/a , 所以 int(b/a)+1>b/a,
所以1/(x+) < a/b 又 /int(b/a)=/x >=a/b 所以 x+1就是最小的 k 使得 /k < a/b 所以 k=int(b/a) +  证明完毕

知道了 k 的下界,那还要求 k 的上界

显然每次求的分母肯定要比上一次大(题目要求)

所以如果后面所有的分母都为 k ,加起来还没有当前要求的数大,那就不要再搜下去了,再下去也不会有结果的

然后就可以搜了,至于判断是否可用我用的是set

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<set>
using namespace std;
const int N=1e5+;
set <long long> p;
long long t,A,B,n,mxdep;
long long ans[N],w[N];
bool flag;
inline long long gcd(long long a,long long b)
{
return b ? gcd(b,a%b) : a;
}//gcd是为了约分
inline bool pd()
{
for(int i=mxdep;i;i--)
if(ans[i]!=w[i])
return ans[i]&&ans[i]<w[i];
return ;
}//判断答案是否更优
inline void dfs(long long dep,long long a,long long b,long long mi)
{
if(dep==mxdep)
{
if(b%a||(b<(mi-)*a+)||p.count(b/a)) return;//判断合法性
//如果a/b可化为 1/k 的形式并且 1/k 可以选
w[dep]=b/a;
if(pd()) return;//判断答案是否更优
memcpy(ans,w,sizeof(w)); flag=;//更新
return;
}
mi=max(mi,b/a+);//求出下界
for(long long i=mi;i;i++)
{
if( (mxdep-dep+)*b<=i*a ) return;//上界
if(p.count(i)) continue;//判断合法
w[dep]=i;//记录路径
long long xa=a*i-b,xb=i*b;//通分
long long z=gcd(xa,xb);
dfs(dep+,xa/z,xb/z,i+);//约分,向下一层
}
}
int main()
{
cin>>t;
for(long long i=;i<=t;i++)
{
flag=; mxdep=;
cin>>A>>B>>n;
long long c;
p.clear();//细节
while(n--) scanf("%lld",&c),p.insert(c);//存储不合法的数
while(mxdep++)
{
memset(ans,,sizeof(ans));
dfs(,A,B,B/A+);
if(flag) break;
}//迭代加深
printf("Case %lld: %lld/%lld=1/%lld",i,A,B,ans[]);
for(int i=;i<=mxdep;i++)
printf("+1/%lld",ans[i]);
printf("\n");
}
return ;
}

UVA12558 Egyptian Fractions (HARD version)(埃及分数)的更多相关文章

  1. UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)

    UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...

  2. uva12558 Egyptian Fractions (HARD version)(迭代深搜)

    Egyptian Fractions (HARD version) 题解:迭代深搜模板题,因为最小个数,以此为乐观估价函数来迭代深搜,就可以了. #include<cstdio> #inc ...

  3. UVA-12558 Egyptian Fractions (HARD version) (IDA* 或 迭代加深搜索)

    题目大意:经典的埃及分数问题. 代码如下: # include<iostream> # include<cstdio> # include<cstring> # i ...

  4. UVa 12558 - Egyptian Fractions (HARD version)

    题目大意: 给出一个真分数,把它分解成最少的埃及分数的和.同时给出了k个数,不能作为分母出现,要求解的最小的分数的分母尽量大. 分析: 迭代加深搜索,求埃及分数的基础上,加上禁用限制就可以了.具体可以 ...

  5. 【习题 7-7 UVA-12558】Egyptian Fractions (HARD version)

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 迭代加深搜索. 枚举最大量maxdep 在dfs里面传剩余的要凑的分子.分母 以及上一次枚举的值是多少. 然后找到最小的k,满足1/ ...

  6. 【Uva 12558】 Egyptian Fractions (HARD version) (迭代加深搜,IDA*)

    IDA* 就是iterative deepening(迭代深搜)+A*(启发式搜索) 启发式搜索就是设计估价函数进行的搜索(可以减很多枝哦~) 这题... 理论上可以回溯,但是解答树非常恐怖,深度没有 ...

  7. UVA_埃及分数(Hard Version) UVA 12588

    Problem EEg[y]ptian Fractions (HARD version)Given a fraction a/b, write it as a sum of different Egy ...

  8. UVA12558-Efyptian Fractions(HARD version)(迭代加深搜索)

    Problem UVA12558-Efyptian Fractions(HARD version) Accept:187  Submit:3183 Time Limit: 3000 mSec  Pro ...

  9. 华为OJ平台——将真分数分解为埃及分数

    题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...

随机推荐

  1. vesamenu.c32:not a COM32R image报错解决方案

    今天用U盘刻录安装Linux Mint 的时候,一直出现 vesamenu.c32:not a COM32R image这个报错,查了很久,原因好像是电脑是老电脑的原因.处理的办法很简单,只需要输入l ...

  2. 修改LINUX ROOT密码

    Connecting to 10.10.70.22:22... Connection established. To escape to local shell, press 'Ctrl+Alt+]' ...

  3. C++字符串流保存数据

    文件流是以外存文件为输入输出对象的数据流.字符串流是以内存中用户定义的字符数组(字符串)为输入输出对象的. 建立输出字符串流: ostrstream strout(c,sizeof(c));第一个参数 ...

  4. Web性能优化 高并发网站解决 单例 已看1

    Web性能优化分为服务器端和浏览器端两个方面. 一.浏览器端,关于浏览器端优化,分很多个方面1.压缩源码和图片JavaScript文件源代码可以采用混淆压缩的方式,CSS文件源代码进行普通压缩,JPG ...

  5. Zbar 大图像分析

    博客转载自:https://blog.csdn.net/sunflower_boy/article/details/50429252 为了减少处理时间,可以设定更大的扫描间距,减少不必要的解码类型,去 ...

  6. python3-函数的参数的四种简单用法:

    def print_two(*args):     arg1, arg2 = args     print "arg1: %r, arg2: %r" % (arg1,arg2)   ...

  7. IP地址及子网掩码计算

    主机号全0表示网络号,主机号全1表示广播地址 我们都知道,IP是由四段数字组成,在此,我们先来了解一下3类常用的IP A类IP段 0.0.0.0 到127.255.255.255 B类IP段 128. ...

  8. Entity Framework Tutorial Basics(34):Table-Valued Function

    Table-Valued Function in Entity Framework 5.0 Entity Framework 5.0 supports Table-valued functions o ...

  9. Entity Framework Tutorial Basics(29):Stored Procedure in Entity Framework

    Stored Procedure in Entity Framework: Entity Framework has the ability to automatically build native ...

  10. 学会使用postman工具模拟请求-----待补充

    登录: backstop 密码:backstop的密码 记得加上header,在swagger中有content-type. 请求,则是api下对应的请求. get请求直接加入链接即可. post请求 ...