Problem Description

One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.

Input

The first line is an integer T(1≤T≤10),
indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of
operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of
operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which
is multiplied in the nth operation. (the nth operation must be a type 1
operation.)

It's guaranteed that in type 2 operation, there won't be two same n.

Output

For each test case, the first line, please
output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the
calculator.

Sample Input

1

10 1000000000

1 2

2 1

1 2

1 10

2 3

2 4

1 6

1 7

1 12

2 7

Sample Output

Case #1:

2

1

2

20

10

1

6

42

504

84

题目主要是出现的除法,在模条件下是不能进行除法的,除非存在逆元可以实现除法,但是此处除数不一定与被除数互质。

但是如果过程中不模的话,就要使用大数,会T。

考虑到题目中提到了,除数不会出现相同的。

也就是如果乘了1,2,3,然后再除掉2的话,结果就是由1和3构成,这样就不用考虑每个数的情况了,此时的每个数就是一个整体,结果只和这个数有没有出现有关。

于是可以考虑用线段树来维护分段的积。当某一个数被除掉了,所有与这个数相关的区间都要重新计算,最多有log(q)个区间。

这样效率就是qlogq,是满足条件的。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const int maxN = ;
int q, m;
int op[maxN], top; //线段树
struct node
{
int lt, rt;
LL val;
}tree[*maxN]; //向上更新
void pushUp(int id)
{
tree[id].val = (tree[id<<].val*tree[id<<|].val)%m;
} //建立线段树
void build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].val = ;//每段的初值,根据题目要求
if (lt == rt)
{
//tree[id].add = ??;
return;
}
int mid = (lt+rt)>>;
build(lt, mid, id<<);
build(mid+, rt, id<<|);
pushUp(id);
} void add(int lt, int rt, int id, int pls)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
{
if (pls)
{
tree[id].val *= pls;
tree[id].val %= m;
}
else
tree[id].val = ;
return;
}
int mid = (tree[id].lt+tree[id].rt)>>;
if (lt <= mid)
add(lt, rt, id<<, pls);
if (rt > mid)
add(lt, rt, id<<|, pls);
pushUp(id);
} void work()
{
build(, q, );
top = ;
int d, y;
for (int i = ; i < q; ++i)
{
scanf("%d%d", &d, &y);
if (d == )
add(top, top, , y);
else
add(y, y, , );
op[top++] = y;
printf("%I64d\n", tree[].val);
}
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d:\n", times);
scanf("%d%d", &q, &m);
work();
}
return ;
}

ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)的更多相关文章

  1. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  2. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  3. ACM学习历程——HDU3333 Turing Tree(线段树 && 离线操作)

    Problem Description After inventing Turing Tree, 3xian always felt boring when solving problems abou ...

  4. ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  5. hdu 5475 模拟计算器乘除 (2015上海网赛H题 线段树)

    给出有多少次操作 和MOD 初始值为1 操作1 y 表示乘上y操作2 y 表示除以第 y次操作乘的那个数 线段树的叶子结点i 表示 第i次操作乘的数 将1替换成y遇到操作2 就把第i个结点的值 替换成 ...

  6. ACM学习历程—HDU 5443 The Water Problem(RMQ)(2015长春网赛1007题)

    Problem Description In Land waterless, water is a very limited resource. People always fight for the ...

  7. ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)

    Problem Description In Geometry, the problem of track is very interesting. Because in some cases, th ...

  8. ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)

    Problem Description Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109 ...

  9. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

随机推荐

  1. Leetcode - CopyWithRandomList

    Algorithm: Iterate and copy the original list first. For the random pointer, just copy the value fro ...

  2. lua面向对象铺垫

    Account = { balance = , withdraw = function(self, v) self.balance = self.balance - v end } --:操作符隐藏了 ...

  3. Office 365系列(-)

    昨天参加上海微软TechED技术大会,看见很多传说中的大牛,听了涂曙光老师等人的讲座,激情澎湃啊,看见他们对技术以及程序员社区的投入及激情,十分敬佩.自己搞IT行业也已经10多年了,平常都很少写博客和 ...

  4. Just a Hook(线段树)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. ACM暑假集训第三周小结

    这一周学的图论,学了这么些 两种存图的方法:邻接矩阵( map[n][n] ) , 邻接表( headlis[n] , vector<int> G[n] )存图的方法,各有各的好,我的理解 ...

  6. java操作文件流对象

    所有流对象 InputStream 字节流         FileInputStream 字节流 专门读写非文本文件的         BufferedInputStream 高效流 OutPutS ...

  7. This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem

    The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...

  8. vue表单输入的绑定

    vue的核心:声明式的指令和数据的双向绑定. 那么声明式的指令,已经给大家介绍完了.接下来我们来研究一下什么是数据的双向绑定? 另外,大家一定要知道vue的设计模式:MVVM M是Model的简写,V ...

  9. 7.Django模型类的定义和管理

    Django的模型类是给ORM层服务的 1.每个数据模型都是django.db.models.Model的子类. 2.它的父类Model包含了所有必要的和数据库交互的方法,并提供了定义数据库字段的语法 ...

  10. Js中的Object.defineProperty

    通过Object.defineProperty为对象设置属性,并同时规定属性的属性(可见性,可配置性,可枚举性等) 备注:如果通过var obj = {} obj.age = 18这种方式设置的属性, ...