一、基础知识

(1)泰勒公式

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。具有局部有效性。

基本形式如下:

由以上的基本形式可知泰勒公式的迭代形式为:

以上这个迭代形式是针对二阶泰勒展开,你也可以进行更多阶的泰勒展开。

(2)梯度下降法

在机器学习算法中,我们的目标是最小化损失函数L(theta), 结合泰勒展开公式,我们可以得到如下的公式:

为什么这里的, 我觉得是因为这样它和前面的相乘之后,只要a取正值,那么他的变化值就一定是一个负数,换句话,这样就能够确保他的损失一定是减少的。

(3)牛顿法

牛顿法和梯度下降法一样都是一种优化手段。他们二者的区别在于牛顿法采用的二阶泰勒展开,而梯度下降使用的一阶泰勒展开。

二、概念解释

(1)gradient descend和gradient boosting

  gradient descend和gradient boosting的区别在于前者是对于参数的更新,后者是对于模型的更新

(2)Boosting算法

Boosting算法是一种加法模型:

(3)决策树

决策树的优点:可解释性,可处理混合类型特征,具有伸缩不变形,具有特征组合的作用,可自然的处理缺失值,对异常点鲁棒, 有特征选择作用,可拓展性强,容易并行

决策树的缺点:缺乏平滑性(针对回归树), 不适合处理高维稀疏数据

三、GBDT算法

XGBoost算法是GBDT算法的进阶版,在我们了解和实现XGBoost算法之前,要先了解GBDT算法。

XGBoost算法的更多相关文章

  1. XGBoost算法--学习笔记

    学习背景 最近想要学习和实现一下XGBoost算法,原因是最近对项目有些想法,准备做个回归预测.作为当下比较火的回归预测算法,准备直接套用试试效果. 一.基础知识 (1)泰勒公式 泰勒公式是一个用函数 ...

  2. 机器学习总结(一) Adaboost,GBDT和XGboost算法

    一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表 ...

  3. Python机器学习笔记:XgBoost算法

    前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...

  4. 说说xgboost算法

    xgboost算法最近真是越来越火,趁着这个浪头,我们在最近一次的精准营销活动中,也使用了xgboost算法对某产品签约行为进行预测和营销,取得了不错的效果.说到xgboost,不得不说它的两大优势, ...

  5. [ML学习笔记] XGBoost算法

    [ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...

  6. 转载:XGBOOST算法梳理

    学习内容: CART树 算法原理 损失函数 分裂结点算法 正则化 对缺失值处理 优缺点 应用场景 sklearn参数 转自:https://zhuanlan.zhihu.com/p/58221959 ...

  7. xgboost算法教程(两种使用方法)

    标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...

  8. XGBoost算法原理小结

    在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲 ...

  9. 04-09 XgBoost算法

    目录 XgBoost算法 一.XgBoost算法学习目标 二.XgBoost算法详解 2.1 XgBoost算法参数 2.2 XgBoost算法目标函数 2.3 XgBoost算法正则化项 2.4 X ...

随机推荐

  1. try-catch-finally 规则( 异常处理语句的语法规则 )

    1)  必须在 try 之后添加 catch 或 finally 块.try 块后可同时接 catch 和 finally 块,但至少有一个块. 2) 必须遵循块顺序:若代码同时使用 catch 和 ...

  2. 操作系统 Linux ex1 note

    ctrl + alt + T 命令行 ctrl + alt + F7 ctrl + alt + F1-6 ls 列出所有文件 / 根目录 ~ /home/username cd 切换路径 . 当前目录 ...

  3. raspberry pi 3 openjdk 性能低下解决方法

    在使用nutch 是时候发现generate的性能很低,应该是openjdk的问题. orcale 实际已经提供了armhf的jdk,替换下性能就上去了 jdk下载链接:Download 配置方法和普 ...

  4. chrome浏览器跨域模式设置

    做前后分离的webapp开发的时候,出于一些原因往往需要将浏览器设置成支持跨域的模式,好在chrome浏览器就是支持可跨域的设置,网上也有很多chrome跨域设置教程.但是新版本的chrome浏览器提 ...

  5. javascript 字典类型的使用

    javascript  字典类型的使用 1.使用Array: var arr = new Array(); arr["zs"] = "zhangsan"; ar ...

  6. 最全PyCharm教程--for python

    PyCharm简介: PyCharm是由JetBrains打造的一款Python IDE,VS2010的重构插件Resharper就是出自JetBrains之手.   同时支持Google App E ...

  7. numpy中transpose和swapaxes函数讲解

    1 transpose() 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数. 我们看如下一个numpy的数组: arr=np.arange(16).reshape( ...

  8. NSNull空值

    1.前言 作为占据空间的一个空值,如用在数组或字典中占据一个没有任何值的空间. 1.1 NULL & nil 的区别: nil 是 OC 的,空对象,地址指向空的对象,指针地址指向的是 NUL ...

  9. 启动HBase脚本start-hbase.sh时报Class path contains multiple SLF4J bindings.解决方法

    1. 使用start-hbase.sh启动HBase时报Class path contains multiple SLF4J bindings.错误,原因是jar包冲突导致的.所以,对于和Hadoop ...

  10. java插入图片到数据库(可以批量)

    package sundun.zfpt.gg.web; import java.io.File; import java.io.FileInputStream; import java.sql.Con ...