sqoop导入数据
来源https://www.cnblogs.com/qingyunzong/p/8807252.html
一、概述
sqoop 是 apache 旗下一款“Hadoop 和关系数据库服务器之间传送数据”的工具。
核心的功能有两个:
导入、迁入
导出、迁出
导入数据:MySQL,Oracle 导入数据到 Hadoop 的 HDFS、HIVE、HBASE 等数据存储系统
导出数据:从 Hadoop 的文件系统中导出数据到关系数据库 mysql 等 Sqoop 的本质还是一个命令行工具,和 HDFS,Hive 相比,并没有什么高深的理论。
sqoop:
工具:本质就是迁移数据, 迁移的方式:就是把sqoop的迁移命令转换成MR程序
hive
工具:本质就是执行计算,依赖于HDFS存储数据,把SQL转换成MR程序
生产环境中sqoop的使用
二、工作机制
将导入或导出命令翻译成 MapReduce 程序来实现 在翻译出的 MapReduce 中主要是对 InputFormat 和 OutputFormat 进行定制
三、安装
1、前提概述
将来sqoop在使用的时候有可能会跟那些系统或者组件打交道?
HDFS, MapReduce, YARN, ZooKeeper, Hive, HBase, MySQL
sqoop就是一个工具, 只需要在一个节点上进行安装即可。
补充一点: 如果你的sqoop工具将来要进行hive或者hbase等等的系统和MySQL之间的交互
你安装的SQOOP软件的节点一定要包含以上你要使用的集群或者软件系统的安装包
补充一点: 将来要使用的azakban这个软件 除了会调度 hadoop的任务或者hbase或者hive的任务之外, 还会调度sqoop的任务
azkaban这个软件的安装节点也必须包含以上这些软件系统的客户端/2、
2、软件下载
下载地址http://mirrors.hust.edu.cn/apache/
sqoop版本说明
绝大部分企业所使用的sqoop的版本都是 sqoop1
sqoop-1.4.6 或者 sqoop-1.4.7 它是 sqoop1
sqoop-1.99.4----都是 sqoop2
此处使用sqoop-1.4.6版本sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz
(1)上传解压缩安装包到指定目录
因为之前hive只是安装在hadoop3机器上,所以sqoop也同样安装在hadoop3机器上
- [hadoop@hadoop3 ~]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C apps/
2)进入到 conf 文件夹,找到 sqoop-env-template.sh,修改其名称为 sqoop-env.sh
- [hadoop@hadoop3 ~]$ cd apps/
- [hadoop@hadoop3 apps]$ ls
- apache-hive-2.3.-bin hadoop-2.7. hbase-1.2. sqoop-1.4..bin__hadoop-2.0.-alpha zookeeper-3.4.
- [hadoop@hadoop3 apps]$ mv sqoop-1.4..bin__hadoop-2.0.-alpha/ sqoop-1.4.
- [hadoop@hadoop3 apps]$ cd sqoop-1.4./conf/
- [hadoop@hadoop3 conf]$ ls
- oraoop-site-template.xml sqoop-env-template.sh sqoop-site.xml
- sqoop-env-template.cmd sqoop-site-template.xml
- [hadoop@hadoop3 conf]$ mv sqoop-env-template.sh sqoop-env.sh
(3)修改 sqoop-env.sh
- hadoop@hadoop3 conf]$ vi sqoop-env.sh
- export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.7.
- #Set path to where hadoop-*-core.jar is available
- export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.7.
- #set the path to where bin/hbase is available
- export HBASE_HOME=/home/hadoop/apps/hbase-1.2.
- #Set the path to where bin/hive is available
- export HIVE_HOME=/home/hadoop/apps/apache-hive-2.3.-bin
- #Set the path for where zookeper config dir is
- export ZOOCFGDIR=/home/hadoop/apps/zookeeper-3.4./conf
为什么在sqoop-env.sh 文件中会要求分别进行 common和mapreduce的配置呢???
- 在apache的hadoop的安装中;四大组件都是安装在同一个hadoop_home中的
- 但是在CDH, HDP中, 这些组件都是可选的。
- 在安装hadoop的时候,可以选择性的只安装HDFS或者YARN,
- CDH,HDP在安装hadoop的时候,会把HDFS和MapReduce有可能分别安装在不同的地方。
4)加入 mysql 驱动包到 sqoop1.4.6/lib 目录下
- hadoop@hadoop3 ~]$ cp mysql-connector-java-5.1.40-bin.jar apps/sqoop-1.4.6/lib/
(5)配置系统环境变量
- [hadoop@hadoop3 ~]$ vi .bashrc
- #Sqoop
- export SQOOP_HOME=/home/hadoop/apps/sqoop-1.4.
- export PATH=$PATH:$SQOOP_HOME/bin
保存退出使其立即生效
- [hadoop@hadoop3 ~]$ source .bashrc
(6)验证安装是否成功
- sqoop-version 或者 sqoop version
Sqoop的基本命令
基本操作
首先,我们可以使用 sqoop help 来查看,sqoop 支持哪些命令
- [hadoop@hadoop3 ~]$ sqoop help
- Warning: /home/hadoop/apps/sqoop-1.4./../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4./../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- // :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
- usage: sqoop COMMAND [ARGS]
- Available commands:
- codegen Generate code to interact with database records
- create-hive-table Import a table definition into Hive
- eval Evaluate a SQL statement and display the results
- export Export an HDFS directory to a database table
- help List available commands
- import Import a table from a database to HDFS
- import-all-tables Import tables from a database to HDFS
- import-mainframe Import datasets from a mainframe server to HDFS
- job Work with saved jobs
- list-databases List available databases on a server
- list-tables List available tables in a database
- merge Merge results of incremental imports
- metastore Run a standalone Sqoop metastore
- version Display version information
- See 'sqoop help COMMAND' for information on a specific command.
- [hadoop@hadoop3 ~]$
然后得到这些支持了的命令之后,如果不知道使用方式,可以使用 sqoop command 的方式 来查看某条具体命令的使用方式,比如:
- [hadoop@hadoop3 ~]$ sqoop help import
- Warning: /home/hadoop/apps/sqoop-1.4./../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4./../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- // :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
- usage: sqoop import [GENERIC-ARGS] [TOOL-ARGS]
- Common arguments:
- --connect <jdbc-uri> Specify JDBC connect
- string
- --connection-manager <class-name> Specify connection manager
- class name
- --connection-param-file <properties-file> Specify connection
- parameters file
- --driver <class-name> Manually specify JDBC
- driver class to use
- --hadoop-home <hdir> Override
- $HADOOP_MAPRED_HOME_ARG
- --hadoop-mapred-home <dir> Override
- $HADOOP_MAPRED_HOME_ARG
- --help Print usage instructions
- -P Read password from console
- --password <password> Set authentication
- password
- --password-alias <password-alias> Credential provider
- password alias
- --password-file <password-file> Set authentication
- password file path
- --relaxed-isolation Use read-uncommitted
- isolation for imports
- --skip-dist-cache Skip copying jars to
- distributed cache
- --username <username> Set authentication
- username
- --verbose Print more information
- while working
- Import control arguments:
- --append Imports data
- in append
- mode
- --as-avrodatafile Imports data
- to Avro data
- files
- --as-parquetfile Imports data
- to Parquet
- files
- --as-sequencefile Imports data
- to
- SequenceFile
- s
- --as-textfile Imports data
- as plain
- text
- (default)
- --autoreset-to-one-mapper Reset the
- number of
- mappers to
- one mapper
- if no split
- key
- available
- --boundary-query <statement> Set boundary
- query for
- retrieving
- max and min
- value of the
- primary key
- --columns <col,col,col...> Columns to
- import from
- table
- --compression-codec <codec> Compression
- codec to use
- for import
- --delete-target-dir Imports data
- in delete
- mode
- --direct Use direct
- import fast
- path
- --direct-split-size <n> Split the
- input stream
- every 'n'
- bytes when
- importing in
- direct mode
- -e,--query <statement> Import
- results of
- SQL
- 'statement'
- --fetch-size <n> Set number
- 'n' of rows
- to fetch
- from the
- database
- when more
- rows are
- needed
- --inline-lob-limit <n> Set the
- maximum size
- for an
- inline LOB
- -m,--num-mappers <n> Use 'n' map
- tasks to
- import in
- parallel
- --mapreduce-job-name <name> Set name for
- generated
- mapreduce
- job
- --merge-key <column> Key column
- to use to
- join results
- --split-by <column-name> Column of
- the table
- used to
- split work
- units
- --table <table-name> Table to
- read
- --target-dir <dir> HDFS plain
- table
- destination
- --validate Validate the
- copy using
- the
- configured
- validator
- --validation-failurehandler <validation-failurehandler> Fully
- qualified
- class name
- for
- ValidationFa
- ilureHandler
- --validation-threshold <validation-threshold> Fully
- qualified
- class name
- for
- ValidationTh
- reshold
- --validator <validator> Fully
- qualified
- class name
- for the
- Validator
- --warehouse-dir <dir> HDFS parent
- for table
- destination
- --where <where clause> WHERE clause
- to use
- during
- import
- -z,--compress Enable
- compression
- Incremental import arguments:
- --check-column <column> Source column to check for incremental
- change
- --incremental <import-type> Define an incremental import of type
- 'append' or 'lastmodified'
- --last-value <value> Last imported value in the incremental
- check column
- Output line formatting arguments:
- --enclosed-by <char> Sets a required field enclosing
- character
- --escaped-by <char> Sets the escape character
- --fields-terminated-by <char> Sets the field separator character
- --lines-terminated-by <char> Sets the end-of-line character
- --mysql-delimiters Uses MySQL's default delimiter set:
- fields: , lines: \n escaped-by: \
- optionally-enclosed-by: '
- --optionally-enclosed-by <char> Sets a field enclosing character
- Input parsing arguments:
- --input-enclosed-by <char> Sets a required field encloser
- --input-escaped-by <char> Sets the input escape
- character
- --input-fields-terminated-by <char> Sets the input field separator
- --input-lines-terminated-by <char> Sets the input end-of-line
- char
- --input-optionally-enclosed-by <char> Sets a field enclosing
- character
- Hive arguments:
- --create-hive-table Fail if the target hive
- table exists
- --hive-database <database-name> Sets the database name to
- use when importing to hive
- --hive-delims-replacement <arg> Replace Hive record \0x01
- and row delimiters (\n\r)
- from imported string fields
- with user-defined string
- --hive-drop-import-delims Drop Hive record \0x01 and
- row delimiters (\n\r) from
- imported string fields
- --hive-home <dir> Override $HIVE_HOME
- --hive-import Import tables into Hive
- (Uses Hive's default
- delimiters if none are
- set.)
- --hive-overwrite Overwrite existing data in
- the Hive table
- --hive-partition-key <partition-key> Sets the partition key to
- use when importing to hive
- --hive-partition-value <partition-value> Sets the partition value to
- use when importing to hive
- --hive-table <table-name> Sets the table name to use
- when importing to hive
- --map-column-hive <arg> Override mapping for
- specific column to hive
- types.
- HBase arguments:
- --column-family <family> Sets the target column family for the
- import
- --hbase-bulkload Enables HBase bulk loading
- --hbase-create-table If specified, create missing HBase tables
- --hbase-row-key <col> Specifies which input column to use as the
- row key
- --hbase-table <table> Import to <table> in HBase
- HCatalog arguments:
- --hcatalog-database <arg> HCatalog database name
- --hcatalog-home <hdir> Override $HCAT_HOME
- --hcatalog-partition-keys <partition-key> Sets the partition
- keys to use when
- importing to hive
- --hcatalog-partition-values <partition-value> Sets the partition
- values to use when
- importing to hive
- --hcatalog-table <arg> HCatalog table name
- --hive-home <dir> Override $HIVE_HOME
- --hive-partition-key <partition-key> Sets the partition key
- to use when importing
- to hive
- --hive-partition-value <partition-value> Sets the partition
- value to use when
- importing to hive
- --map-column-hive <arg> Override mapping for
- specific column to
- hive types.
- HCatalog import specific options:
- --create-hcatalog-table Create HCatalog before import
- --hcatalog-storage-stanza <arg> HCatalog storage stanza for table
- creation
- Accumulo arguments:
- --accumulo-batch-size <size> Batch size in bytes
- --accumulo-column-family <family> Sets the target column family for
- the import
- --accumulo-create-table If specified, create missing
- Accumulo tables
- --accumulo-instance <instance> Accumulo instance name.
- --accumulo-max-latency <latency> Max write latency in milliseconds
- --accumulo-password <password> Accumulo password.
- --accumulo-row-key <col> Specifies which input column to
- use as the row key
- --accumulo-table <table> Import to <table> in Accumulo
- --accumulo-user <user> Accumulo user name.
- --accumulo-visibility <vis> Visibility token to be applied to
- all rows imported
- --accumulo-zookeepers <zookeepers> Comma-separated list of
- zookeepers (host:port)
- Code generation arguments:
- --bindir <dir> Output directory for compiled
- objects
- --class-name <name> Sets the generated class name.
- This overrides --package-name.
- When combined with --jar-file,
- sets the input class.
- --input-null-non-string <null-str> Input null non-string
- representation
- --input-null-string <null-str> Input null string representation
- --jar-file <file> Disable code generation; use
- specified jar
- --map-column-java <arg> Override mapping for specific
- columns to java types
- --null-non-string <null-str> Null non-string representation
- --null-string <null-str> Null string representation
- --outdir <dir> Output directory for generated
- code
- --package-name <name> Put auto-generated classes in
- this package
- Generic Hadoop command-line arguments:
- (must preceed any tool-specific arguments)
- Generic options supported are
- -conf <configuration file> specify an application configuration file
- -D <property=value> use value for given property
- -fs <local|namenode:port> specify a namenode
- -jt <local|resourcemanager:port> specify a ResourceManager
- -files <comma separated list of files> specify comma separated files to be copied to the map reduce cluster
- -libjars <comma separated list of jars> specify comma separated jar files to include in the classpath.
- -archives <comma separated list of archives> specify comma separated archives to be unarchived on the compute machines.
- The general command line syntax is
- bin/hadoop command [genericOptions] [commandOptions]
- At minimum, you must specify --connect and --table
- Arguments to mysqldump and other subprograms may be supplied
- after a '--' on the command line.
- [hadoop@hadoop3 ~]$
示例
列出MySQL数据有哪些数据库
- [hadoop@hadoop3 ~]$ sqoop list-databases \
- > --connect jdbc:mysql://hadoop1:3306/ \
- > --username root \
- > --password root
- Warning: /home/hadoop/apps/sqoop-1.4./../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4./../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- // :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
- // :: WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
- // :: INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
- information_schema
- hivedb
- mysql
- performance_schema
- test
- [hadoop@hadoop3 ~]$
列出MySQL中的某个数据库有哪些数据表:
- [hadoop@hadoop3 ~]$ sqoop list-tables \
- > --connect jdbc:mysql://hadoop1:3306/mysql \
- > --username root \
- > --password root
- Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- 18/04/12 13:46:21 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
- 18/04/12 13:46:21 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
- 18/04/12 13:46:21 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
- columns_priv
- db
- event
- func
- general_log
- help_category
- help_keyword
- help_relation
- help_topic
- innodb_index_stats
- innodb_table_stats
- ndb_binlog_index
- plugin
- proc
- procs_priv
- proxies_priv
- servers
- slave_master_info
- slave_relay_log_info
- slave_worker_info
- slow_log
- tables_priv
- time_zone
- time_zone_leap_second
- time_zone_name
- time_zone_transition
- time_zone_transition_type
- user
- [hadoop@hadoop3 ~]$
创建一张跟mysql中的help_keyword表一样的hive表hk:
- [hadoop@hadoop3 ~]$ sqoop create-hive-table \
- > --connect jdbc:mysql://hadoop1:3306/mysql \
- > --username root \
- > --password root \
- > --table help_keyword \
- > --hive-table hk
- Warning: /home/hadoop/apps/sqoop-1.4./../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4./../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- // :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
- // :: WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
- // :: INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
- // :: INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
- // :: INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
- // :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT
- // :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT
- SLF4J: Class path contains multiple SLF4J bindings.
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2./lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
- SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
- // :: INFO hive.HiveImport: Loading uploaded data into Hive
- // :: INFO hive.HiveImport: SLF4J: Class path contains multiple SLF4J bindings.
- // :: INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.-bin/lib/log4j-slf4j-impl-2.6..jar!/org/slf4j/impl/StaticLoggerBinder.class]
- // :: INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2./lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
- // :: INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
- // :: INFO hive.HiveImport: SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
- // :: INFO hive.HiveImport: SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
- // :: INFO hive.HiveImport:
- // :: INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/apps/apache-hive-2.3.-bin/lib/hive-common-2.3..jar!/hive-log4j2.properties Async: true
- // :: INFO hive.HiveImport: OK
- // :: INFO hive.HiveImport: Time taken: 11.651 seconds
- // :: INFO hive.HiveImport: Hive import complete.
- [hadoop@hadoop3 ~]$
Sqoop的数据导入
、从RDBMS导入到HDFS中
、把MySQL数据库中的表数据导入到Hive中
3、把MySQL数据库中的表数据导入到hbase
“导入工具”导入单个表从 RDBMS 到 HDFS。表中的每一行被视为 HDFS 的记录。所有记录 都存储为文本文件的文本数据(或者 Avro、sequence 文件等二进制数据)
https://www.jianshu.com/p/be33f4b5c62e 详细说明和参数设置
- Sqoop并行化是启多个map task实现的,-m(或--num-mappers)参数指定map task数,默认是四个。并行度不是设置的越大越好,map task的启动和销毁都会消耗资源,
而且过多的数据库连接对数据库本身也会造成压力。在并行操作里,首先要解决输入数据是以什么方式负债均衡到多个map的,即怎么保证每个map处理的数据量大致相同且数据不重复。
--split-by指定了split column,在执行并行操作时(多个map task),Sqoop需要知道以什么列split数据,其思想是:- 1、先查出split column的最小值和最大值
- 2、然后根据map task数对(max-min)之间的数据进行均匀的范围切分
- 例如id作为split column,其最小值是0、最大值1000,如果设置4个map数,每个map task执行的查询语句类似于:
SELECT * FROM sometable WHERE id >= lo AND id < hi
每个task里(lo,hi)的值分别是 (0, 250), (250, 500), (500, 750), and (750, 1001)。
1、从RDBMS导入到HDFS中
语法格式
- sqoop import (generic-args) (import-args)
常用参数
- --connect <jdbc-uri> jdbc 连接地址
- --connection-manager <class-name> 连接管理者
- --driver <class-name> 驱动类
- --hadoop-mapred-home <dir> $HADOOP_MAPRED_HOME
- --help help 信息
- -P 从命令行输入密码
- --password <password> 密码
- --username <username> 账号
- --verbose 打印流程信息
- --connection-param-file <filename> 可选参数
示例
普通导入:导入mysql库中的help_keyword的数据到HDFS上
导入的默认路径:/user/hadoop/help_keyword
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- -m
- [hadoop@hadoop3 ~]$ sqoop import \
- > --connect jdbc:mysql://hadoop1:3306/mysql \
- > --username root \
- > --password root \
- > --table help_keyword \
- > -m 1
- Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- 18/04/12 13:53:48 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
- 18/04/12 13:53:48 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
- 18/04/12 13:53:48 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
- 18/04/12 13:53:48 INFO tool.CodeGenTool: Beginning code generation
- 18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
- 18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
- 18/04/12 13:53:49 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
- 注: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.java使用或覆盖了已过时的 API。
- 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
- 18/04/12 13:53:51 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.jar
- 18/04/12 13:53:51 WARN manager.MySQLManager: It looks like you are importing from mysql.
- 18/04/12 13:53:51 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
- 18/04/12 13:53:51 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
- 18/04/12 13:53:51 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
- 18/04/12 13:53:51 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
- SLF4J: Class path contains multiple SLF4J bindings.
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
- SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
- 18/04/12 13:53:52 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
- 18/04/12 13:53:53 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
- 18/04/12 13:53:58 INFO db.DBInputFormat: Using read commited transaction isolation
- 18/04/12 13:53:58 INFO mapreduce.JobSubmitter: number of splits:1
- 18/04/12 13:53:59 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0001
- 18/04/12 13:54:00 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0001
- 18/04/12 13:54:00 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0001/
- 18/04/12 13:54:00 INFO mapreduce.Job: Running job: job_1523510178850_0001
- 18/04/12 13:54:17 INFO mapreduce.Job: Job job_1523510178850_0001 running in uber mode : false
- 18/04/12 13:54:17 INFO mapreduce.Job: map 0% reduce 0%
- 18/04/12 13:54:33 INFO mapreduce.Job: map 100% reduce 0%
- 18/04/12 13:54:34 INFO mapreduce.Job: Job job_1523510178850_0001 completed successfully
- 18/04/12 13:54:35 INFO mapreduce.Job: Counters: 30
- File System Counters
- FILE: Number of bytes read=0
- FILE: Number of bytes written=142965
- FILE: Number of read operations=0
- FILE: Number of large read operations=0
- FILE: Number of write operations=0
- HDFS: Number of bytes read=87
- HDFS: Number of bytes written=8264
- HDFS: Number of read operations=4
- HDFS: Number of large read operations=0
- HDFS: Number of write operations=2
- Job Counters
- Launched map tasks=1
- Other local map tasks=1
- Total time spent by all maps in occupied slots (ms)=12142
- Total time spent by all reduces in occupied slots (ms)=0
- Total time spent by all map tasks (ms)=12142
- Total vcore-milliseconds taken by all map tasks=12142
- Total megabyte-milliseconds taken by all map tasks=12433408
- Map-Reduce Framework
- Map input records=619
- Map output records=619
- Input split bytes=87
- Spilled Records=0
- Failed Shuffles=0
- Merged Map outputs=0
- GC time elapsed (ms)=123
- CPU time spent (ms)=1310
- Physical memory (bytes) snapshot=93212672
- Virtual memory (bytes) snapshot=2068234240
- Total committed heap usage (bytes)=17567744
- File Input Format Counters
- Bytes Read=0
- File Output Format Counters
- Bytes Written=8264
- 18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Transferred 8.0703 KB in 41.8111 seconds (197.6507 bytes/sec)
- 18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Retrieved 619 records.
- [hadoop@hadoop3 ~]$
查看导入的文件
- [hadoop@hadoop4 ~]$ hadoop fs -cat /user/hadoop/help_keyword/part-m-
导入: 指定分隔符和导入路径
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --target-dir /user/hadoop11/my_help_keyword1 \
- --fields-terminated-by '\t' \
- -m
导入数据:带where条件
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --where "name='STRING' " \
- --table help_keyword \
- --target-dir /sqoop/hadoop11/myoutport1 \
- -m
查询指定列
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --columns "name" \
- --where "name='STRING' " \
- --table help_keyword \
- --target-dir /sqoop/hadoop11/myoutport22 \
- -m
- selct name from help_keyword where name = "string"
导入:指定自定义查询SQL
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/ \
- --username root \
- --password root \
- --target-dir /user/hadoop/myimport33_1 \
- --query 'select help_keyword_id,name from mysql.help_keyword where $CONDITIONS and name = "STRING"' \
- --split-by help_keyword_id \
- --fields-terminated-by '\t' \
- -m
在以上需要按照自定义SQL语句导出数据到HDFS的情况下:
1、引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义
2、自定义的SQL语句中必须带有WHERE \$CONDITIONS
2、把MySQL数据库中的表数据导入到Hive中
Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive
普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名:
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --hive-import \
- -m
导入过程
第一步:导入mysql.help_keyword的数据到hdfs的默认路径
第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中
第三步:把临时目录中的数据导入到hive表中
查看数据
- [hadoop@hadoop3 ~]$ hadoop fs -cat /user/hive/warehouse/help_keyword/part-m-
指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录
手动创建mydb_test数据块
- create database mydb_test;
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --fields-terminated-by "\t" \
- --lines-terminated-by "\n" \
- --hive-import \
- --hive-overwrite \
- --create-hive-table \
- --delete-target-dir \
- --hive-database mydb_test \
- --hive-table new_help_keyword
查询验证
- select * from new_help_keyword limit 10;
- 上面的导入语句等价于
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --fields-terminated-by "\t" \
- --lines-terminated-by "\n" \
- --hive-import \
- --hive-overwrite \
- --create-hive-table \
- --hive-table mydb_test.new_help_keyword \
- --delete-target-dir
增量导入
执行增量导入之前,先清空hive数据库中的help_keyword表中的数据
- truncate table help_keyword;
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --target-dir /user/hadoop/myimport_add \
- --incremental append \
- --check-column help_keyword_id \
- --last-value \
- -m
语句执行成功
- [hadoop@hadoop3 ~]$ sqoop import \
- > --connect jdbc:mysql://hadoop1:3306/mysql \
- > --username root \
- > --password root \
- > --table help_keyword \
- > --target-dir /user/hadoop/myimport_add \
- > --incremental append \
- > --check-column help_keyword_id \
- > --last-value 500 \
- > -m 1
- Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
- Please set $HCAT_HOME to the root of your HCatalog installation.
- Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
- Please set $ACCUMULO_HOME to the root of your Accumulo installation.
- 18/04/12 22:01:07 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
- 18/04/12 22:01:08 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
- 18/04/12 22:01:08 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
- 18/04/12 22:01:08 INFO tool.CodeGenTool: Beginning code generation
- 18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
- 18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
- 18/04/12 22:01:08 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
- 注: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.java使用或覆盖了已过时的 API。
- 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
- 18/04/12 22:01:11 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.jar
- SLF4J: Class path contains multiple SLF4J bindings.
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
- SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
- SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
- 18/04/12 22:01:12 INFO tool.ImportTool: Maximal id query for free form incremental import: SELECT MAX(`help_keyword_id`) FROM `help_keyword`
- 18/04/12 22:01:12 INFO tool.ImportTool: Incremental import based on column `help_keyword_id`
- 18/04/12 22:01:12 INFO tool.ImportTool: Lower bound value: 500
- 18/04/12 22:01:12 INFO tool.ImportTool: Upper bound value: 618
- 18/04/12 22:01:12 WARN manager.MySQLManager: It looks like you are importing from mysql.
- 18/04/12 22:01:12 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
- 18/04/12 22:01:12 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
- 18/04/12 22:01:12 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
- 18/04/12 22:01:12 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
- 18/04/12 22:01:12 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
- 18/04/12 22:01:12 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
- 18/04/12 22:01:17 INFO db.DBInputFormat: Using read commited transaction isolation
- 18/04/12 22:01:17 INFO mapreduce.JobSubmitter: number of splits:1
- 18/04/12 22:01:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0010
- 18/04/12 22:01:19 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0010
- 18/04/12 22:01:19 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0010/
- 18/04/12 22:01:19 INFO mapreduce.Job: Running job: job_1523510178850_0010
- 18/04/12 22:01:30 INFO mapreduce.Job: Job job_1523510178850_0010 running in uber mode : false
- 18/04/12 22:01:30 INFO mapreduce.Job: map 0% reduce 0%
- 18/04/12 22:01:40 INFO mapreduce.Job: map 100% reduce 0%
- 18/04/12 22:01:40 INFO mapreduce.Job: Job job_1523510178850_0010 completed successfully
- 18/04/12 22:01:41 INFO mapreduce.Job: Counters: 30
- File System Counters
- FILE: Number of bytes read=0
- FILE: Number of bytes written=143200
- FILE: Number of read operations=0
- FILE: Number of large read operations=0
- FILE: Number of write operations=0
- HDFS: Number of bytes read=87
- HDFS: Number of bytes written=1576
- HDFS: Number of read operations=4
- HDFS: Number of large read operations=0
- HDFS: Number of write operations=2
- Job Counters
- Launched map tasks=1
- Other local map tasks=1
- Total time spent by all maps in occupied slots (ms)=7188
- Total time spent by all reduces in occupied slots (ms)=0
- Total time spent by all map tasks (ms)=7188
- Total vcore-milliseconds taken by all map tasks=7188
- Total megabyte-milliseconds taken by all map tasks=7360512
- Map-Reduce Framework
- Map input records=118
- Map output records=118
- Input split bytes=87
- Spilled Records=0
- Failed Shuffles=0
- Merged Map outputs=0
- GC time elapsed (ms)=86
- CPU time spent (ms)=870
- Physical memory (bytes) snapshot=95576064
- Virtual memory (bytes) snapshot=2068234240
- Total committed heap usage (bytes)=18608128
- File Input Format Counters
- Bytes Read=0
- File Output Format Counters
- Bytes Written=1576
- 18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Transferred 1.5391 KB in 28.3008 seconds (55.6875 bytes/sec)
- 18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Retrieved 118 records.
- 18/04/12 22:01:41 INFO util.AppendUtils: Creating missing output directory - myimport_add
- 18/04/12 22:01:41 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments:
- 18/04/12 22:01:41 INFO tool.ImportTool: --incremental append
- 18/04/12 22:01:41 INFO tool.ImportTool: --check-column help_keyword_id
- 18/04/12 22:01:41 INFO tool.ImportTool: --last-value 618
- 18/04/12 22:01:41 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')
- [hadoop@hadoop3 ~]$
3、把MySQL数据库中的表数据导入到hbase
普通导入:先创建Hbase里面的表,再执行导入的语句
- hbase(main):001:0> create 'new_help_keyword', 'base_info'
- sqoop import \
- --connect jdbc:mysql://hadoop1:3306/mysql \
- --username root \
- --password root \
- --table help_keyword \
- --hbase-table new_help_keyword \
- --column-family person \
- --hbase-row-key help_keyword_id
实验案例:
sqoop导入数据的更多相关文章
- Sqoop导入数据到mysql数据库报错:ERROR tool.ExportTool: Error during export: Export job failed!(已解决)
问题描述: Container killed by the ApplicationMaster. Container killed on request. Exit code is 143 Conta ...
- sqoop导入数据到hive---2
1.hive-table 从mysql导入数据到hive表中,可以使用--hive-table来指定hive的表名,不指定hive表名,则hive表名与mysql表名保持一致. sqoop impor ...
- sqoop导入数据到hive
1.1hive-import参数 使用--hive-import就可以将数据导入到hive中,但是下面这个命令执行后会报错,报错信息如下: sqoop import --connect jdbc:my ...
- sqoop导入数据到hive中元数据问题
简单配置了sqoop之后开始使用,之前用的时候很好用,也不记得有没有启动hivemetastore,今天用的时候没有启动,结果导入数据时,如果使用了db.tablename,就会出现找不到数据库的错, ...
- 1.6-1.10 使用Sqoop导入数据到HDFS及一些设置
一.导数据 1.import和export Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了import和export这两个工具.这两个工具非常强大, 提供了很多 ...
- 大数据学习——sqoop导入数据
把数据从关系型数据库导入到hadoop 启动sqoop 导入表表数据到HDFS 下面的命令用于从MySQL数据库服务器中的emp表导入HDFS. sqoop import \ --connect jd ...
- sqoop导入数据到hive表中的相关操作
1.使用sqoop创建表并且指定对应的hive表中的字段的数据类型,同时指定该表的分区字段名称 sqoop create-hive-table --connect "jdbc:oracle: ...
- 1.11-1.12 Sqoop导入数据时两种增量方式导入及direct
一.增量数据的导入 1.两种方式 ## query 有一个唯一标识符,通常这个表都有一个字段,类似于插入时间createtime where createtime => 201509240000 ...
- 使用sqoop1.4.4从oracle导入数据到hive中错误记录及解决方案
在使用命令导数据过程中,出现如下错误 sqoop import --hive-import --connect jdbc:oracle:thin:@192.168.29.16:1521/testdb ...
随机推荐
- Luogu 3172 [CQOI2015]选数
考虑枚举$k$的倍数$dk$,容易知道$\left \lceil \frac{L}{K} \right \rceil\leq d\leq \left \lfloor \frac{H}{k} \righ ...
- 总结:kathasis如何发送get请求获取数据
1.进入前端页面,找到对应的模块,开始塞字段数据. 2.如果字段为基本类型,如String,比如website,则在前段界面,右击,inspect,找到对应的代码所处的jsp,跳转到该jsp,通过该j ...
- Thread.currentThread().getContextClassLoader() 和 Class.getClassLoader()区别
查了一些资料也不是太明白两个的区别,但是前者是最安全的用法 打个简单的比方,你一个WEB程序,发布到Tomcat里面运行.首先是执行Tomcat org.apache.catalina.startup ...
- auto和register关键字
关键字概述 很多朋友看到这儿可能会有疑问,往往其它讲C语言的书籍都是从HelloWorld,数据类型开始C语言学习的,为什么我们要从C语言的关键字开始呢?关于这点,我有两点需要说明: 本章节面向的读者 ...
- Java流机制详解
转自http://blog.csdn.net/qq_16558621/article/details/51377887 http://www.cr173.com/html/18666_1.html
- java获取Excel的导入
先准备好这2个架包 import java.io.*; import org.apache.commons.io.FileUtils; import org.apache.poi.hssf.userm ...
- 用MODI OCR 21种语言
作者:马健邮箱:stronghorse_mj@hotmail.com发布:2007.12.08更新:2012.07.09按照<MODI中的OCR模块>一文相关内容进行修订2012.07.0 ...
- mongodb对数组中的元素进行查询详解
原文链接:http://blog.csdn.net/renfufei/article/details/78320176 MongoDB中根据数组子元素进行匹配,有两种方式. 使用 “[数组名].[子元 ...
- AppDelegate生命周期回调顺序
1. 应用初次启动: - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDiction ...
- kylin 连接 hortonworks 中的 hive 遇到的问题
用 hortonworks(V3.1.0.0) 部署了 ambari (V2.7.3),用 ambari 部署了 hadoop 及 hive. 1. 启动 kylin(V2.6)时,遇到如下问题: ...