(上不了p站我要死了,侵权度娘背锅)

如果这就是启发式搜索的话,那启发式搜索也不是什么高级玩意嘛。。(啪啪打脸)

Description

  在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位。在任何时候一个骑士都能按照骑

士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵坐标相差为1的格子)移动到空

位上。 给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘: 为了体现出骑士精神,他们必须以最少的步

数完成任务。



Input

  第一行有一个正整数T(T<=10),表示一共有N组数据。接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑

士,*表示空位。两组数据之间没有空行。

Output

  对于每组数据都输出一行。如果能在15步以内(包括15步)到达目标状态,则输出步数,否则输出-1。

Sample Input

2

10110

01*11

10111

01001

00000

01011

110*1

01110

01010

00100

Sample Output

7

-1

其实呢,启发式搜索的重点还是一个估价函数。

其灵活变通也基本是在估价函数上。

这道题的估价函数f(n)=g(n)+h(n),g函数自不必说,h函数是将来要移动的最小步数,等价于有多少个骑士失配。若f(n)>maxstep,则return。

还有一些细节。像这种求最小步数的题,首先是想到bfs,甚至想到了双向bfs,但是发现状态难以储存,即使转为二进制也会爆(数组存不下)。而dfs相对于bfs的优点之一在于状态不必储存,直接对状态进行更改即可。所以思考用迭代加深搜索来处理,用启发式剪枝。

另外,估价函数的准确性也十分重要。多1或少1就可能将答案剪掉,甚至造成连样例都过不了的惨剧。。。QwQ

主要是把 当前状态、第step步有没有走 等辨析清楚。

1A代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; char ch[5][5],tp[5][5];
char final[5][5]={{'1','1','1','1','1'},
{'0','1','1','1','1'},
{'0','0','*','1','1'},
{'0','0','0','0','1'},
{'0','0','0','0','0'}};
int dx[8]={-2,-2,-1,1,2,2,1,-1},dy[8]={-1,1,2,2,1,-1,-2,-2};
int lim;
bool ck; inline int cnt(){
int tot=0;
for(int i=0;i<5;i++)
for(int j=0;j<5;j++)
if(final[i][j]!=tp[i][j]) tot++;
return tot;
}
void print(){
for(int i=0;i<5;i++){
for(int j=0;j<5;j++)
printf("%c",tp[i][j]);
printf("\n");
}
}
void dfs(int step,int x,int y){
if(step>lim){
if(cnt()==0) ck=1;
return ;
}
if(step+cnt()-2>lim) return;
for(int i=0;i<8;i++){
int nx=x+dx[i],ny=y+dy[i];
if(nx<5&&nx>=0&&ny<5&&ny>=0){
swap(tp[x][y],tp[nx][ny]);
dfs(step+1,nx,ny);
if(ck) return;
swap(tp[x][y],tp[nx][ny]);
}
}
}
void init(){
for(int i=0;i<5;i++)
for(int j=0;j<5;j++) tp[i][j]=ch[i][j];
}
void solve(){
int x,y;
for(int i=0;i<5;i++){
scanf("%s",ch[i]);
for(int j=0;j<5;j++) if(ch[i][j]=='*') x=i,y=j;
}
for(lim=1;lim<=15;lim++){
ck=0;
init();
dfs(1,x,y);
if(ck) break;
}
if(ck) printf("%d\n",lim);
else printf("-1\n");
}
int main(){
int t;
scanf("%d",&t);
while(t--) solve();
return 0;
}

【bzoj1085】【 [SCOI2005]骑士精神】启发式剪枝+迭代加深搜索的更多相关文章

  1. BZOJ1085 SCOI2005 骑士精神【IDA* 启发式迭代加深】

    BZOJ1085 SCOI2005 骑士精神 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐 ...

  2. BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1800  Solved: 984[Submit][Statu ...

  3. [BZOJ1085][SCOI2005]骑士精神 搜索

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1085 大的思路是迭代加深搜索,我们加一个明显的剪枝,当棋盘中位置不对的骑士的数目加上已经走 ...

  4. [BZOJ1085] [SCOI2005] 骑士精神 (A*)

    Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2, ...

  5. BZOJ1085: [SCOI2005]骑士精神

    传送门 dfs+A*优化. A*是人工智能算法,属于启发式搜索的一部分.第一次知道这个名词是在写虫食算的时候闵神说这个用A*搞跑的比谁都快..但是当时搜了很多资料想搞清楚这个东西,但是当时还是太拿衣服 ...

  6. BZOJ1085 [SCOI2005]骑士精神(IDA*)

    IDA*是IDS的基础上加上满足A*算法的估值函数来剪枝的搜索算法. 这题代码量挺少的,可以看出整个IDA*的框架: #include<cstdio> #include<cstrin ...

  7. bzoj1085 [SCOI2005]骑士精神——IDA*

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 搜索,IDA*,估价就是最少需要跳的步数: 代码意外地挺好写的,memcmp 用起来好 ...

  8. 算法复习——迭代加深搜索(骑士精神bzoj1085)

    题目: Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相 ...

  9. BZOJ.1085.[SCOI2005]骑士精神(迭代加深搜索)

    题目链接 最小步数这类,适合用迭代加深搜索. 用空格走代替骑士. 搜索时记录上一步防止来回走. 不需要每次判断是否都在位置,可以计算出不在对应位置的骑士有多少个.而且每次复原一个骑士至少需要一步. 空 ...

随机推荐

  1. Python全栈 MySQL 数据库(SQL命令大全、MySQL 、Python调用)

    为了梦想与了信仰    开局一张图   主要三个方面: 1.Linux终端命令 2.MySQL语句 3.Python调用   先删库 再跑路.....                         ...

  2. Python全栈工程师(函数嵌套、变量作用域)

    ParisGabriel   感谢 大家的支持                                                               每天坚持 一天一篇 点个订阅 ...

  3. 容器基础(一): Docker介绍

    IaaS IaaS阶段, 用户租借基础设施,但是还是需要像以前管理服务器那样,用脚本或者手工方式在这些机器上部署应用.这个过程中当然难免会碰到云端机器和本地机器环境不一致的问题.想想每一次同步不同机器 ...

  4. Linux开启MySQL远程连接

    Linux开启MySQL远程连接的设置步骤 . MySQL默认root用户只能本地访问,不能远程连接管理MySQL数据库,那么Linux下如何开启MySQL远程连接?设置步骤如下: 1.GRANT命令 ...

  5. HDU 3775 Chain Code pick定理

    pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b÷2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积. 思路:http://blog.csdn.net ...

  6. 【现代程序设计】homework-01

    HOMEWORK-01 1) 建立 GitHub 账户, 把课上做的 “最大子数组之和” 程序签入 已完成. 2) 在 cnblogs.com 建立自己的博客. 写博客介绍自己的 GitHub 账户. ...

  7. 获取任意网站的图标,标题栏logo,网站logo

    https://www.hao123.com/favicon.ico      网站换成你想要的  大多数都可以

  8. Axure+SVN——实现多人团队开发

    最近进行考试系统重构,一个小组十几个人,这么多人要同时搞需求画原型.这样原本的合作开发工具SVN已经不能满足现在的需求了,这是就找到了一个新的方法--Axure+SVN. 在SVN服务器端建立一个空的 ...

  9. intellij idea 2017 快捷键(提高工作效率)

    1.Shift+Enter Annotation annotation = c.getAnnotation(A.class); 这个时候你写代码的时候可能光标在c.getAnno中的某一个位置,那么你 ...

  10. 比较运算符compareTo()、equals()、==之间的区别与应用总结

    在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量分配 ...