先注明学习博客的地址:(http://www.cnblogs.com/hoodlum1980/archive/2008/10/11/1308493.html

题目描述:任何正整数n都可以写成n=n1+n2+n3+……+nk;1<=n1,n2,n3,……nk<=n;这被称为整数n的划分。

例如正整数6的划分如下:

6; 
5+1; 
4+2,4+1+1; 
3+3,3+2+1,3+1+1+1; 
2+2+2,2+2+1+1,2+1+1+1+1; 
1+1+1+1+1+1。

目标:求出n的划分个数,6的划分个数为11。

该博主给出了两种做法,我先研究一下第一种做法(递归法)

首先引入另一个概念:n的m划分,就是说划分必须满足:1<=n1,n2,n3,……nk<=m;这时我们就可以进行递归的分析了,求n的划分就是求f(n,n);

下面讨论f(n,m)的求法:

1.当n等于1时,只有一种划分;

2.当m等于1时,也只有一种划分;

3.当n=m时,

划分中含有m时,有一种划分;

划分中不含m时,有f(n,m-1)中划分;

综上:f(n,m)=1+f(n,m-1);

4.当n>m时,

划分中含有m时,即划分的形式是{m,{x1, x2, ..., xi}},则{x1, x2, ..., xi}个数为f(n-m,m);

划分中不含m时,即划分中的数都比m小,则划分个数为f(n,m-1);

综上划分f(n,m) =  f(n-m,m)+f(n,m-1);

通过对求f(n,m)的过程分析,可见可能出现n<m的情况。

5.当n<m时,f(n,m)= f(n,n);

综上:

f(n, m) =             1;                                         ( n = 1 or m = 1 )

f(n, n);                                 ( n < m )

1+ f(n, m - 1);                      ( n = m )

f(n - m, m) + f(n, m - 1);       ( n > m )

在写代码AC掉那道题之前,先体会一下,这个递归为什么能成为递归的经典例题吧。其实这题并不能很明显的找到缩小问题规模的入口,反而让你引入了一个过渡的变量,而且每一步的缩小都很勉强,只能从表达式上看出来。我之所以觉得这道题很好的原因是因为这种分类讨论是高中时经常用的,或许这才是活学活用的实例,是一种考虑问题的方式,是一种生活的态度,是智商带动情商的提高(扯远了&……&……&)。

正经事AC代码:

 #include<stdio.h>

 int F(int n, int m)
{
if (n == )
return ;
if (m == )
return ;
if (n < m)
return F(n, n);
if (n == m)
return F(n, m - ) + ;
if (n>m)
return F(n - m,m) + F(n, m - );
} int main()
{
int T;
scanf("%d",&T);
while (T--)
{
int n;
scanf("%d",&n);
printf("%d\n",F(n,n));
}
}

这里其实还是有一个问题的就是是否有必要加上记忆化搜索,经过测试发现是很有必要加的,测试的代码:

 #include<stdio.h>
#include<string.h> int a[][]; int F(int n, int m)
{
if (a[n][m] > ){
printf("Ues the a[%d][%d]\n",n,m);
return a[n][m];
}
if (n == )
return a[][m]=;
if (m == )
return a[n][]=;
if (n < m)
return a[n][n]=F(n, n);
if (n == m)
return a[n][m]=F(n, m - ) + ;
if (n>m)
return a[n][m]=F(n - m,m) + F(n, m - );
} int main()
{
int T;
scanf("%d",&T);
while (T--)
{
memset(a,-,sizeof(a));
int n;
scanf("%d",&n);
printf("%d\n",F(n,n));
}
}

好了,这题就到这儿了,至于博主提供了另一个方法,暂时就不讨论了。

整数划分——真正的递归经典例题(NYOJ——90)的更多相关文章

  1. NYOJ90 整数划分(经典递归和dp)

    整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,  其中n1≥n2≥…≥nk≥1,k≥1.  正 ...

  2. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  3. C语言经典例题100

    C语言经典例题100 来源 http://www.fishc.com 适合初学者 ----------------------------------------------------------- ...

  4. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

  5. nyoj_90_整数划分_201403161553

    整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 其中n1≥n2≥…≥nk≥1,k≥1. 正整数 ...

  6. C语言中的经典例题用javascript怎么解?(一)

    C语言中的经典例题用javascript怎么解?(一) 一.1+2+3+……+100=?        <script type="text/javascript">  ...

  7. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  8. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  9. POJ1664(整数划分)

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30894   Accepted: 19504 Description ...

随机推荐

  1. delphi各个版本编译开关值

    delphi各个版本编译开关值 {$IFDEF VER80}  - Delphi 1{$IFDEF VER90}  - Delphi 2{$IFDEF VER100} - Delphi 3{$IFDE ...

  2. JQuery- JQuery学习

    jQuery与JavaScript加载页面的区别 1.JavaScript传统的方式页面加载会存在覆盖问题,加载比jQuery慢(整个页面加载完毕<包含里面的其他内容,比如图片>) 2.j ...

  3. Spring- 异常org.xml.sax.SAXParseException; systemId: http://www.springframework.org/schema/context/; lineNumber: 1; columnNumber: 55; 在 publicId 和 systemId 之间需要有空格。

    抛出异常 六月 03, 2018 7:40:44 下午 org.springframework.context.support.AbstractApplicationContext prepareRe ...

  4. mysql 使用过程中出现问题

    1. mysql_front连接报错,sql执行错误#3167的解决方案 提示:The 'INFORMATION_SCHEMA.SESSION_VARIABLES' feature is disabl ...

  5. java:安装tomcat8/tomcat9(简单安装配置)

    java:安装tomcat8/tomcat9(简单安装配置) pache-tomcat-8.5.23(免安装板) 1.安装完成后右击我的电脑—属性—高级系统设置—环境变量, 在系统变量中添加以下变量 ...

  6. Redis安装以及基本操作命令

    Redis安装 cd redis-2.6.14make PREFIX=/usr/local/redis install 可能会出现的错误提示>>提示1:make[3]: gcc:命令未找到 ...

  7. hdu-5641 King's Phone (水题)

    题目链接: King's Phone Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Othe ...

  8. linux命令学习笔记(9):touch 命令

    linux的touch命令不常用,一般在使用make的时候可能会用到,用来修改文件时间戳,或者新建一个不存在的文件. .命令格式: touch [选项]... 文件... .命令参数: -a 或--t ...

  9. I.MX6 FFmpeg 录制视频

    /************************************************************************* * I.MX6 FFmpeg 录制视频 * 说明: ...

  10. 在oracle中,select语句查询字段中非纯数字值

    最近,将原来的数字符字段转换为数字时,总报错误:无效数字. 如何找出其中哪些是非数字字符的记录?比较麻烦的事.下面是用Oracle DB自带的函数translate可以找出来的 1.创建测试表 Cre ...