pat1057. Stack (30)
1057. Stack (30)
Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With N elements, the median value is defined to be the (N/2)-th smallest element if N is even, or ((N+1)/2)-th if N is odd.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<= 105). Then N lines follow, each contains a command in one of the following 3 formats:
Push key
Pop
PeekMedian
where key is a positive integer no more than 105.
Output Specification:
For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print "Invalid" instead.
Sample Input:
17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop
Sample Output:
Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid
注意点:
1.树状数组的常见操作
学习:
http://www.cnblogs.com/zhangshu/archive/2011/08/16/2141396.html
http://blog.csdn.net/eli850934234/article/details/8863839
int lowbit(int val){
return val&(-val);
}
int sum(int val){
int res=;
while(val>){
res+=line[val];
val-=lowbit(val);
}
return res;
}
void add(int val,int x){
while(val<maxnum){
line[val]+=x;
val+=lowbit(val);
}
}
int find(int val){
int l=,r=maxnum,mid,res;
while(l<r){//右边取不到
mid=(l+r)/;
res=sum(mid);
if(res<val){
l=mid+;//(1)
}
else{
r=mid;//[l,r)的每一点求sum,一定小于sum(r),最终一定终止于(1)。最后返回l。
}
}
return l;
}
这里要注意二分查找的书写。对于区间[a,b),不断二分,最后返回l。
2.string的操作一般要比char的操作时间长。这里用的string会超时。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#define maxnum 100005
int line[maxnum];
int lowbit(int val){
return val&(-val);
}
int sum(int val){
int res=;
while(val>){
res+=line[val];
val-=lowbit(val);
}
return res;
}
void add(int val,int x){
while(val<maxnum){
line[val]+=x;
val+=lowbit(val);
}
}
int find(int val){
int l=,r=maxnum,mid,res;
while(l<r){//右边取不到
mid=(l+r)/;
res=sum(mid);
if(res<val){
l=mid+;
}
else{
r=mid;
}
}
return l;
}
int main(){
//freopen("D:\\INPUT.txt","r",stdin);
int n,num;
char op[];
//string op;
stack<int> s;
scanf("%d",&n);
while(n--){
scanf("%s",op);//cin>>op;
if(op[]=='u'){
scanf("%d",&num);
s.push(num);
add(num,);
}
else{
if(op[]=='o'){
if(s.empty()){
printf("Invalid\n");
}
else{
num=s.top();
s.pop();
printf("%d\n",num);
add(num,-);
}
}
else{
if(s.size()==){
printf("Invalid\n");
continue;
}
if(s.size()%==){
num=find(s.size()/);
}
else{
num=find((s.size()+)/);
}
printf("%d\n",num);
}
}
}
return ;
}
pat1057. Stack (30)的更多相关文章
- PAT1057 stack(分块思想)
1057 Stack (30分) Stack is one of the most fundamental data structures, which is based on the princ ...
- PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****
1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the prin ...
- pat 甲级 1057 Stack(30) (树状数组+二分)
1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the princi ...
- pat1057 stack
超时算法,利用2的特殊性,用2个multiset来维护.单个multiset维护没法立即找到中位数. 其实也可以只用1个multiset,用一个中位指针,++,--来维护中位数. #include&l ...
- 1057. Stack (30)
分析: 考察树状数组 + 二分, 注意以下几点: 1.题目除了正常的进栈和出栈操作外增加了获取中位数的操作, 获取中位数,我们有以下方法: (1):每次全部退栈,进行排序,太浪费时间,不可取. (2) ...
- PAT 1057. Stack (30)
题目地址:http://pat.zju.edu.cn/contests/pat-a-practise/1057 用树状数组和二分搜索解决,对于这种对时间复杂度要求高的题目,用C的输入输出显然更好 #i ...
- PAT (Advanced Level) 1057. Stack (30)
树状数组+二分. #include<iostream> #include<cstring> #include<cmath> #include<algorith ...
- 1057. Stack (30) - 树状数组
题目如下: Stack is one of the most fundamental data structures, which is based on the principle of Last ...
- PAT甲级题解-1057. Stack (30)-树状数组
不懂树状数组的童鞋,正好可以通过这道题学习一下树状数组~~百度有很多教程的,我就不赘述了 题意:有三种操作,分别是1.Push key:将key压入stack2.Pop:将栈顶元素取出栈3.PeekM ...
随机推荐
- 判断某元素是否在Array中
几年前,Insus.NET有尝试把Array转换为IList接口,然后使用IList.Contains()方法.当时评论时,也引起了一些异议.原博文地址:http://www.cnblogs.com/ ...
- Velodyne VPL16 configuration in ROS Kinetic
1. 驱动安装 sudo apt-get install ros-kinetic-velodyne 2. 在已有工作空间catkin_ws中,添加Velodyne包 cd ~/catkin_ws/sr ...
- liunx一次安装多个软件包
https://blog.csdn.net/finded/article/details/44955953 编写shell脚本程序 一次安装多个软件,主要用于一些软件依赖环境配置. 1.shell脚本 ...
- partial、struct、interface与C#和CLR的关系
partial.struct.interface是C#编译器特有的,CLR对此一无所知.
- Web项目和Windows应用程序的配置文件
1.Web项目,配置文件应创建在Web项目下,即使是要把配置文件作为一个单独的文件进行配置(比如log4net.config),也需要把该配置文件放在Web项目下:同理Windows应用程序的化,配置 ...
- Hie with the Pie(状压DP+可以经过多次相同的点要全部走过的最短回路)
大意:一个人要送n份货,给出一个矩阵,表示任意两个点间的直接路径长度,求从起点0送完这n份货(到达指定的n个地点)再回到起点0的最短时间.经过任意顶点的次数不限. 分析:既然是可以过多个点,那我们可以 ...
- 4.AOP
1.代理模式 代理模式(Proxy Pattern)是GoF23种常用设计模式之一使用代理模式创建代理对象,让代理对象控制目标对象的访问,并且可以在不改变目标对象的情况下添加一些额外的功能包括静态代理 ...
- jQuery form插件的使用--ajaxForm()和ajaxSubmit()
转载:https://blog.csdn.net/qq_38602656/article/details/78668924
- OpenCV属性页配置问题~
详细的OpenCV属性页的安装流程,参考这个网站:http://m.bubuko.com/infodetail-793518.html 运行例子时候,如果遇到这个问题,可能配置环境时候出现问题了. 此 ...
- 风险识别工具 - 影响图(Influence Diagram)
原文地址:http://blog.csdn.net/jameszhou/archive/2007/06/24/1664494.aspx PMBOK(2004 3rd 英) P248关于风险识别的图形技 ...