这篇文章介绍的网络有Inception V1、Inception V2、Inception V3、Inception V4与Inception-ResNet-V2。

1、Inception V1

  主要贡献:

  (1)提出inception architecture并对其优化

  (2)取消全连层(因为FC网络输入要固定、参数过多、容易过拟合)

  (3)运用auxiliary classifiers加速网络converge,简称AC

  

  其中1×1的卷积层可以控制kernels的数量,还增加了网络的非线性程度。多个卷层后将卷积直接concate一下。

  网络中间层加入了两个AC,这两个AC在训练的时候也跟着学习,同时把自己学习到的梯度反馈给网络,算上网络最后一层的梯度反馈,GoogLeNet一共有3个“梯度提供商”,先不说这么做有没有问题,它确实提高了网络收敛的速度,因为梯度大了嘛。另外,GoogLeNet在做inference的时候AC是要被摘掉的。

2、Inception V2

  该团队又提出了inception v2的结构,基于上面提到的一些原则,在V1的基础之上主要做了以下改进:

  (1)使用BN层,将每一层的输出都规范化到一个N(0,1)的正态分布,这将有助于训练,因为下一层不必学习输入数据中的偏移,并且可以专注与如何更好地组合特征(也因为在v2里有较好的效果,BN层几乎是成了深度网络的必备)。这也是最大贡献Batch Normalization(BN)。BN层放在每个隐藏层激活函数前,即 wx+b 之后,之后再加激活函数。总的来讲,加入BN层的反向传播没有发生根本的改变,只是多了一个反向计算过程(batchnorm_backward函数)而已。

  (2)使用两个小的3*3卷积核代替一个5*5的大卷积核,好处是:相同的感受野、更少的参数、更深的网络提取特征。

  (3)尝试更小的卷积:1*3 + 3*1 替换3*3 卷积。

3、Inception V3

  论文做出的贡献主要有4个:

  • 1、分解大filters,使其小型化、多层化,其中有个“非对称卷积”很新颖
  • 2、优化inception v1的auxiliary classifiers
  • 3、提出一种缩小特征图大小的方法,说白了就是一种新的、更复杂的pooling层
  • 4、Label smooth,“标签平滑”,很难用中文说清楚的一种方法

4、Inception V4

  各种改网络结构,各种复杂,也是醉了。

  将原来卷积、池化的顺次连接(网络的前几层)替换为stem模块,来获得更深的网络结构。

5、Inception-ResNet-v2

  ResNet 的结构既可以加速训练,还可以提升性能(防止梯度弥散);Inception模块可以在同一层上获得稀疏或非稀疏的特征,作者尝试将两者结合起来。(inception-resnet有v1和v2两个版本,v2表现更好且更复杂,这里只介绍了v2)。
  • 1、在Inception v3的基础上发明了Inception v4,v4比v3更加复杂,复杂到不可思议
  • 2、结合ResNet与GoogLeNet,发明了Inception-ResNet-v1、Inception-ResNet-v2,其中Inception-ResNet-v2效果非常好,但相比ResNet,Inception-ResNet-v2的复杂度非常惊人,跟Inception v4差不多
  • 3、加入了Residual Connections以后,网络的训练速度加快了
  • 4、在网络复杂度相近的情况下,Inception-ResNet-v2略优于Inception-v4
  • 5、Residual Connections貌似只能加速网络收敛,真正提高网络精度的是“更大的网络规模
 

6、总结

  inception  网络系列是从GoogLeNet开始的,一步步将网络设计的更复杂,最后直接结合残差网络,复杂度进一步上升,残差网络负责加快收敛,重要的还是模型的规模。Inception-ResNet v2、ResNet152和Inception v4模型规模差不多,v4略小,Inception v3和ResNet50模型规模相当。

  依我个人理解,网络的负责是为了充分挖掘训练数据图像的特征,减少卷积过程中特征的损失,从而提高分类准确度。但在现实应用中,还需要在模型复杂度,计算量和任务需求上进行权衡选择。如果相对简单的网络能满足要求,就不必须选择复杂的网络。

参考:https://zhuanlan.zhihu.com/p/30756181
   https://www.jianshu.com/p/a2ad00eddbd5
 

目标检测 — Inception-ResNet-v2的更多相关文章

  1. 目标检测之YOLO V2 V3

    YOLO V2 YOLO V2是在YOLO的基础上,融合了其他一些网络结构的特性(比如:Faster R-CNN的Anchor,GooLeNet的\(1\times1\)卷积核等),进行的升级.其目的 ...

  2. 目标检测 - Tensorflow Object Detection API

    一. 找到最好的工具 "工欲善其事,必先利其器",如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架 ...

  3. 目标检测算法之YOLOv1与v2

    YOLO:You Only Look Once(只需看一眼) 基于深度学习方法的一个特点就是实现端到端的检测,相对于其他目标检测与识别方法(如Fast R-CNN)将目标识别任务分成目标区域预测和类别 ...

  4. 目标检测网络之 YOLOv2

    YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体. 每个格子预测B个bounding b ...

  5. AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  6. 目标检测网络之 YOLOv3

    本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...

  7. 【转】目标检测之YOLO系列详解

    本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...

  8. 【目标检测】YOLO:

    PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...

  9. 目标检测之RefineDet

    RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detectio ...

  10. One Stage目标检测

    在计算机视觉中,目标检测是一个难题.在大型项目中,首先需要先进行目标检测,得到对应类别和坐标后,才进行之后的各种分析.如人脸识别,通常是首先人脸检测,得到人脸的目标框,再对此目标框进行人脸识别.如果该 ...

随机推荐

  1. Google Code Jam 2014 资格赛:Problem D. Deceitful War

    This problem is the hardest problem to understand in this round. If you are new to Code Jam, you sho ...

  2. named主从环境部署

    named主 1. bind服务安装配置 yum -y install bind*.x86_64 配置文件: /etc/named.conf /etc/named.rfc1912.zones /etc ...

  3. View Controller容器

    在 iOS 5 之前,view controller 容器是 Apple 的特权.实际上,在 view controller 编程指南中还有一段申明,指出你不应该使用它们.Apple 对 view c ...

  4. Shell 编程基础 --语法高速入门

    简单的说shell就是一个包括若干行Shell或者Linux命令的文件.对于一次编写,多次使用的大量命令,就能够使用单独的文件保存下来,以便日后使用.通常shell脚本以.sh为后缀.第一行一定要指明 ...

  5. NSNotificationCenter详解

    本文转载至 http://blog.csdn.net/chengyingzhilian/article/details/7874408 作用:NSNotificationCenter是专门供程序中不同 ...

  6. PHP 和 AJAX MySQL 数据库实例

    HTML 表单 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  7. 在fc6上搭tftpd

    公司的开发环境依然停留在fc6上,,,,对..很旧,旧到想死. 我在没有进一步熟悉ubuntu的基础上,为了保持ABI一致. 只能依旧在FC6 上开发. 可是现在发现开发完成,我要在fc6上文件到wi ...

  8. linux c编程:信号(四) sigaction

    signal 函数的使用方法简单,但并不属于 POSIX 标准,在各类 UNIX 平台上的实现不尽相同,因此其用途受到了一定的限制.而 POSIX 标准定义的信号处理接口是 sigaction 函数, ...

  9. SAP ATP邏輯可用性檢查

    [转http://tqmeng.blog.163.com/blog/static/169263916201162002414612/]SAP ATP邏輯可用性檢查1.可用性檢查群組OVZ2主要用於檢查 ...

  10. 使用阿里云的PyPI源

    方法1:(1)创建pip.conf文件 (2).编辑如下内容 [global] index-url = http://mirrors.aliyun.com/pypi/simple/ [install] ...