仙人掌

圆方树是用来解决仙人掌图的问题的,那什么是仙人掌图呢?

如图,不存在边同时属于多个环无向连通图是一棵仙人掌



圆方树

定义

原先的仙人掌图,通过一些奇妙的方法,可以转化为一棵由圆点,方点和树边构成的树——圆方树,具体构建方法如下

原仙人掌的每一个点为圆点,对于每个环都新建一个方点,方点向环上的每一个圆点连边,就构成了圆方树。


构建方法

用\(tarjan\)算法求出点双,对于每一个点双新建一个方点与环上的点相连,注意一条边连接两个点的不算点双。

代码:


void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
if(y!=f)
low[x]=min(low[x],dfn[y]);
}
}

在别人的博客里学到了一种更妙的构造方法:

记\(ring[i]\)表示点i是否在一个环里。对于某个点x,我们要从它遍历到它的子节点y时,先将\(ring[x]\)赋为0;然后,我们在\(tarjan\)的时候,若有某个点x,对于其一条连向点y的出边,满足\(dfn[y]<dfn[x]\),则表明y为其祖先,我们就找到了一个环,于是建方点、连新边,并使该环中每个节点的\(ring\)变为1;于是,回溯回那个点\(x\),若\(ring\)依然\(=0\),则表明那个y没有与之形成环,故边\((x,y)\)是树边,在\(T\)中连上它。

以及构造的代码:


void tarjan(int x){
dfn[x]=++tim;
for(int i=G.head[x];i;i=G.nex[i])
if(f[x]!=G.v[i]){
int y=G.v[i];
if(dfn[y]){
f[y]=x;
ring[x]=0;
tarjan(y);
if(!ring[x]) T.add(x,y);
}
else
if(dfn[y]<dfn[x]){
int z=x;
tot++;
while(z!=y){
T.add(z,tot);
ring[z]=1;
z=f[z];
}
T.add(tot,y);
ring[y]=1;
}
}
}


广义圆方树

普通圆方树只能解决仙人掌图上的问题,而广义圆方树则可以将所有无向图转化为圆方树处理。

广义圆方树性质:圆点方点相间,不存在两个‘’相同形状‘’的点相连。

构造方法:

把一条边连接两个点也看成一个点双,原本两个圆点有一条边相连,现在在中间插入一个方点间隔开就好了

(从别人blog搞来的图片)

代码


void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
low[x]=min(low[x],dfn[y]);
}
}


例题

Luogu 4320

比较晚了,先整理这些,以后再补吧

圆方树&广义圆方树[学习笔记]的更多相关文章

  1. 设备树(device tree)学习笔记

    作者信息 作者:彭东林 邮箱:pengdonglin137@163.com 1.反编译设备树 在设备树学习的时候,如果可以看到最终生成的设备树的内容,对于我们学习设备树以及分析问题有很大帮助.这里我们 ...

  2. 设备树(device tree)学习笔记【转】

    转自:https://www.cnblogs.com/pengdonglin137/p/4495056.html 阅读目录(Content) 1.反编译设备树 2.分析工具fdtdump 3.Linu ...

  3. 回文树/回文自动机(PAM)学习笔记

    回文树(也就是回文自动机)实际上是奇偶两棵树,每一个节点代表一个本质不同的回文子串(一棵树上的串长度全部是奇数,另一棵全部是偶数),原串中每一个本质不同的回文子串都在树上出现一次且仅一次. 一个节点的 ...

  4. P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]

    Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...

  5. 树堆(Treap)学习笔记 2020.8.12

    如果一棵二叉排序树的节点插入的顺序是随机的,那么这样建立的二叉排序树在大多数情况下是平衡的,可以证明,其高度期望值为 \(O( \log_2 n )\).即使存在一些极端情况,但是这种情况发生的概率很 ...

  6. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  7. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  8. CF487E Tourists + 圆方树学习笔记(圆方树+树剖+线段树+multiset)

    QWQ果然我已经什么都学不会的人了. 这个题目要求的是图上所有路径的点权和!QWQ(我只会树上啊!) 这个如果是好啊 这时候就需要 圆方树! 首先在介绍圆方树之前,我们先来一点简单的前置知识 首先,我 ...

  9. 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)

    orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...

随机推荐

  1. E - Hangover(1.4.1)

    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

  2. 安卓SAX解析XML文件

    XML文件经常使用的解析方式有DOM解析,SAX解析. 一.Sax SAX(simpleAPIforXML)是一种XML解析的替代方法. 相比于DOM.SAX是一种速度更快,更有效的方法. 它逐行扫描 ...

  3. servlet文件下载2(单文件下载和批量下载)

    使用servlet完毕单文件下载和批量文件下载.批量下载的原理是先将文件打包成zip , 然后再下载. 之前也转载过一篇文件下载的博客,地址:http://blog.csdn.net/ch717828 ...

  4. 一个可以模拟GET,POST,PUT,DELET请求的HTTP在线工具

    一个简陋的HTTP请求工具,UI比较丑陋.0.0,可以用于接口调试. 之前在调试公司的远程接口的时候用的是curl,后来也在网上找到几种Http请求模拟的客户端程序.当时后来发现google app ...

  5. java 实现HttpRequest 发送http请求

    package com.test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStr ...

  6. MBA人物俞洪敏:亿万富翁的生活表

    我的智商非常一般,就是比别人勤奋.我的脑袋不属于特别笨的那种,但肯定也不是顶尖聪明的类型.在北大的50个同学当中,我的智商应该属于中下水平,这说明我不是顶尖高智商. 我的勤奋一般人跟不上.我平均每天工 ...

  7. hdu 1398 Square Coins 分钱币问题

    Square Coins Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  8. 《Lucene in Action》(第二版) 第二章节的学习总结 ---- IndexWriter+Document+Field

    这一章节的学习,主要是学会如何创建索引,使用索引 一.创建索引 1.从原始文件中提取内容.这里的文件,可以是文本文件,也可以是二进制文件.文本文件(txt),lucene可以直接处理:而二进制文件(w ...

  9. 【Postman】接口测试工具:在谷歌浏览器安装插件方法以及使用说明

    安装插件方法: <如何在谷歌浏览器chrome中离线安装.crx扩展程序的三种方法?> <postman chrome插件的安装与使用> 下载地址:http://www.cnp ...

  10. Android Material Design-Defining Shadows and Clipping Views(定义阴影和裁剪视图)-(四)

    转载请注明出处:http://blog.csdn.net/bbld_/article/details/40539131 翻译自:http://developer.android.com/trainin ...