给出a和b求a^b的约数和。

题目描述

输入输出格式

输入格式:

一行两个数a,b。

输出格式:

一个数表示结果对 9901 的模。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15

说明

对于 30%的数据,a,b≤ 10 对于 100%的数据,0 ≤ a,b ≤ 50 000 000

早上听大爷讲完数论马上回来补了一道

这题呢 我们首先可以吧a质因数分解 表示为p1^c1 × p2^c2 ×……× pn^cn

那么a^b就可以表示为p1^(c1*B) × p2^(c2*B) ×……× pn^(cn*B)

A^B的约数表示为p1^k1 × p2^k2 ×……× pn^kn,其中0<=ki<=ci*B

那么所有的约数和就是(1+p1+p1^2+……+p1^(c1*B)) × (1+p2+p2^2+……+p2^(c2*B)) ×……× (1+pn+pn^2+……+pn^(cn*B))

这个拿乘法定律什么的搞一下就可以得到了哇

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int mod=;
LL read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL n,m,ans=;
LL sum[],h[],cnt;
LL qmod(LL a,LL b){
LL ans=;
while(b){
if(b&) ans=ans*a%mod;
b>>=; a=a*a%mod;
}
return ans;
}
void prepare(){
LL v=n;
for(int i=;i<=v;i++)if(n%i==){
sum[++cnt]=i;
h[cnt]++;
n/=i;
while(n%i==) h[cnt]++,n/=i;
h[cnt]*=m;
if(!n) return ;
}
}
int main()
{
n=read(); m=read(); prepare();
//for(int i=1;i<=cnt;i++) printf("[%lld %lld]\n",sum[i],h[i]);
for(int i=;i<=cnt;i++){
LL q=qmod(sum[i]-,mod-),p=qmod(sum[i],h[i]+)-;
ans=ans*p%mod*q%mod;
}printf("%lld\n",ans);
return ;
}

洛谷 P2715 约数和的更多相关文章

  1. 洛谷 [P1403] 约数研究

    本题的思想很好,正难则反 首先如果暴力枚举每个数的约数个数,一定会超时,那么我们就从约数的角度考虑,题目中问的是1~n的约数个数和,那么我们就枚举约数,看每个约数在1~n中出现过几次. #includ ...

  2. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  3. 洛谷 P2424 约数和

    题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...

  4. 洛谷 - P2424 - 约数和 - 整除分块

    https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...

  5. 洛谷 - P1403 - 约数研究 - 数论

    https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...

  6. 洛谷—— P2424 约数和

    https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f ...

  7. 洛谷P2424 约数和 题解

    题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定 ...

  8. 洛谷P3327 约数个数和 结论+莫比乌斯反演

    原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)= ...

  9. 洛谷P1403 约数研究【思维】

    题目:https://www.luogu.org/problemnew/show/P1403 题意: 定义$f(n)$为n的因子个数.给定一个数n,求$f(1)$到$f(n)$之和. 思路: 最直接的 ...

随机推荐

  1. Redis ----------String的操作

    set    key   value 设置key对应的值为String类型的value mset    key   value 一次设置多个 key对应的值 mget    key   value 一 ...

  2. Python学习笔记:单例模式

    单例模式:一个类无论实例化多少次,返回的都是同一个实例,例如:a1=A(), a2=A(), a3=A(),a1.a2和a3其实都是同一个对象,即print(a1 is a2)和print(a2 is ...

  3. strak组件(3):URL别名的优化

    将生成URL别名的功能进行解耦.效果和上一节的一样. 效果图: 新增函数 get_url_name(self, param) # 生成url别名,需要一个参数(list/add/edit/delete ...

  4. C语言字符篇(五)内存函数

    memcpy不可以把目的地址写成本身 但是memmove可以,因为它是先保存到临时空间 #include <string.h>   void *memcpy(void *dest, con ...

  5. 17-比赛1 F - 较小元素 Weak in the Middle (set)

    Seg-El has last chance to make the final changes in order to prevent the destruction of Krypton. He ...

  6. python模块struct和subprocess

    准确地讲,Python没有专门处理字节的数据类型.但由于str既是字符串,又可以表示字节,所以,字节数组=str.而在C语言中,我们可以很方便地用struct.union来处理字节,以及字节和int, ...

  7. [Codeforces Round #443]Div2 C Short Program

    给你一串$n$个按顺序的位运算操作(&,|,^),形如"opt x",要求用不超过5行的位运算,按顺序操作出来和那个结果是一样的.$(n<=5e5,0<=x&l ...

  8. AD9 设置网络标号作用域

    http://blog.sina.com.cn/s/blog_99c8ec600102uxul.html 1.版本:Altium Designer 10 2.原因:在进行多原理图设计时, 不同原理图之 ...

  9. 洛谷P1451 求细胞数量

    求细胞数量 题目链接 这道题大概是一个最简单的联通块的题了qwq 注意枚举起点的时候 一定不要从0开始不然你就会从0进入到了其他联通块中从而多查. 一定看清题意这道题不是同色为联通块!!! AC代码如 ...

  10. 编译器错误消息: CS1617: 选项“6”对 /langversion 无效

    编译错误 说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地修改源代码. 编译器错误消息: CS1617: 选项“6”对 /langversion 无效:必须是 ...