大步小步算法用于解决:已知A, B, C,求X使得

A^x = B (mod C)

成立。

我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, m]

那么原式就变成了:

A^(i
m) = A^j * B

我们先枚举j,把A^j * B加入哈希表

然后枚举i,在表中查照A^(i*m),如果找到了,那么就找到了一个解。

算法的复杂度为O(n^0.5)

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll p, a, b, X1, t, T;
ll pow(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
b >>= 1;
a = a * a % p;
}
return ans;
}
ll inv(ll a, ll p) {
return pow(a, p-2, p);
}
map<ll, ll> mp;
ll BSGS(ll A, ll B, ll C) {
mp.clear();
if(A % C == 0) return -2;
ll m = ceil(sqrt(C));
ll ans;
for(int i = 0; i <= m; i++) {
if(i == 0) {
ans = B % C;
mp[ans] = i;
continue;
}
ans = (ans * A) % C;
mp[ans] = i;
}
ll t = pow(A, m, C);
ans = t;
for(int i = 1; i <= m; i++) {
if(i != 1)ans = ans * t % C;
if(mp.count(ans)) {
int ret = i * m % C - mp[ans] % C;
return (ret % C + C)%C;
}
}
return -2;
}
int main() {
// freopen("input", "r", stdin);
scanf("%lld", &T);
while(T--) {
scanf("%lld %lld %lld %lld %lld", &p, &a, &b, &X1, &t);
if(X1 == t) {
printf("%d\n", 1);
continue;
}
if(a == 0) {
if(t == b) {
printf("%d\n", 2);
}
else printf("%d\n", -1);
continue;
}
if(a == 1) {
if(b == 0) {
printf("%d\n", -1);
continue;
}
ll ans = (((t-X1)%p + p)%p * inv(b, p)) % p;
printf("%lld\n", ans+1);
continue;
}
X1 %= p, a %= p, b %= p, t%= p;
ll tmp = (b%p * inv(a-1, p))%p;
ll B = ((t+tmp)%p * inv((X1+tmp) % p, p)) % p;
ll A = a;
ll ans = BSGS(A, B, p);
printf("%lld\n", ans+1);
}
return 0;
}

[模板]大步小步算法——BSGS算法的更多相关文章

  1. 【算法】BSGS算法

    BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\ ...

  2. 离散对数及其拓展 大步小步算法 BSGS

    离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗​而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗​内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...

  3. 大步小步算法模板题, poj2417

    大步小步模板 (hash稍微有一点麻烦, poj不支持C++11略坑) #include <iostream> #include <vector> #include <c ...

  4. BSGS-Junior·大步小步算法

    本文原载于:http://www.orchidany.cf/2019/02/06/BSGS-junior/#more \(\rm{0x01}\) \(\mathcal{Preface}\) \(\rm ...

  5. 离散对数&&大步小步算法及扩展

    bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...

  6. 【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线 ...

  7. BSGS算法(模板)

    BSGS (大步小步算法) 已知\(a.b. c\),求\(x\).令\(a^x \equiv b \pmod c\). 步骤 \[m = \lceil \sqrtc\ \rceil \]\[x = ...

  8. uva11916 bsgs算法逆元模板,求逆元,组合计数

    其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方 ...

  9. BSGS算法(大小步算法)

    $BSGS$ 算法 $Baby\ Steps\ Giant\ Steps$. 致力于解决给定两个互质的数 $a,\ p$ 求一个最小的非负整数 $x$ 使得 $a^x\equiv b(mod\ p)$ ...

随机推荐

  1. C5509A启动使用定时器

    #include <stdio.h> #include <csl.h> #include <csl_pll.h> #include <csl_chip.h&g ...

  2. Social Media Addiction【社交媒体上瘾】

    Social Media Addiction Children as young as ten are becoming dependent on social media for their sen ...

  3. AD9 设置网络标号作用域

    http://blog.sina.com.cn/s/blog_99c8ec600102uxul.html 1.版本:Altium Designer 10 2.原因:在进行多原理图设计时, 不同原理图之 ...

  4. 如何让button保持点击状态

    http://blog.csdn.net/u010957508/article/details/38385207 他的原理就是在代码里面: view.setSelected(true); 而其他的: ...

  5. SpringBoot推荐基础包

    技术交流群:233513714 Spring Boot 推荐的基础包 名称 说明 spring-boot-starter 核心 POM,包含自动配置支持.日志库和对 YAML 配置文件的支持. spr ...

  6. Redis数据更新

    技术交流群: 233513714

  7. 安装完最小化 RHEL/CentOS 7 后需要做的 30 件事情(二)

    本文导航 -7. 安装 PHP0 -8. 安装 MariaDB 数据库 -9. 安装和配置 SSH 服务器 -10. 安装 GCC (GNU 编译器集) -11. 安装 Java 7. 安装 PHP ...

  8. Eclipse Java 构建路径 ---Eclipse教程第13课

    Eclipse Java 构建路径 设置 Java 构建路径 Java构建路径用于在编译Java项目时找到依赖的类,包括以下几项: 源码包 项目相关的 jar 包及类文件 项目引用的的类库 我们可以通 ...

  9. 在sqlserver 中如何导出数据库表结构到excel表格中

    先建空白excel--在数据库中的左侧找到该表, 选中需要导出的数据--Ctrl+C复制--打开记事本修改编码格式为Unicode-不自动换行保存--Ctrl+A--Ctrl+C,再打开excel-- ...

  10. python multiprocessing.Pool 中map、map_async、apply、apply_async的区别

    multiprocessing是python的多进程库,multiprocessing.dummy则是多线程的版本,使用都一样. 其中都有pool池的概念,进程池/线程池有共同的方法,其中方法对比如下 ...